An autocatalytic biochemical system in the presence of recycling enzyme is solved numerically using two numerical methods based on finite difference schemes. The first method is the well known Euler method which is an...An autocatalytic biochemical system in the presence of recycling enzyme is solved numerically using two numerical methods based on finite difference schemes. The first method is the well known Euler method which is an explicit method, whereas the second method is implicit. Although the implicit method, method 2, is first-order accurate in time it converges to the fixed point(s) for large time step, L Numerical results show the existence of hard excitation and birhythmicity.展开更多
A modified genetic algorithm of multiple selection strategies, crossover strategies and adaptive operator is constructed, and it is used to estimate the kinetic parameters in autocatalytic oxidation of cyclohexane. Th...A modified genetic algorithm of multiple selection strategies, crossover strategies and adaptive operator is constructed, and it is used to estimate the kinetic parameters in autocatalytic oxidation of cyclohexane. The influences of selection strategy, crossover strategy and mutation strategy on algorithm performance are discussed. This algorithm with a specially designed adaptive operator avoids the problem of local optimum usually associated with using standard genetic algorithm and simplex method. The kinetic parameters obtained from the modified genetic algorithm are credible and the calculation results using these parameters agree well with experimental data. Furthermore, a new kinetic model of cyclohexane autocatalytic oxidation is established and the kinetic parameters are estimated by using the modified genetic algorithm.展开更多
Hydrogen challenge mitigation stands as one of the main objectives in the management of severe accidents at Nuclear Power Plants (NPPs). Key strategies for hydrogen control include atmospheric inertization and hydroge...Hydrogen challenge mitigation stands as one of the main objectives in the management of severe accidents at Nuclear Power Plants (NPPs). Key strategies for hydrogen control include atmospheric inertization and hydrogen removal with Passive Autocatalytic Recombiners (PARs) being a commonly accepted approach. However, an examination of PAR operation specificity reveals potential inefficiencies and reliability issues in certain severe accident scenarios. Moreover, during the in-vessel stage of severe accident development, in some severe accident scenarios PARs can unexpectedly become a source of hydrogen detonation. The effectiveness of hydrogen removal systems depends on various factors, including the chosen strategies, severe accident scenarios, reactor building design, and other influencing factors. Consequently, a comprehensive hydrogen mitigation strategy must effectively incorporate a combination of strategies rather than be based on one strategy, taking into consideration the probabilistic risks and uncertainties associated with the implementation of PARs or other traditional methods. In response to these considerations, within the framework of this research it has been suggested a conceptual strategy to mitigate the hydrogen challenge during the in-vessel stage of severe accident development.展开更多
Transdermal drug delivery systems have overcome many limitations of other drug administration routes,such as injection pain and first-pass metabolism following oral route,although transdermal drug delivery systems are...Transdermal drug delivery systems have overcome many limitations of other drug administration routes,such as injection pain and first-pass metabolism following oral route,although transdermal drug delivery systems are limited to drugs with low molecular weight.Hence,new emerging technology allowing high molecular weight drug delivery across the skin—known as‘microneedles’—has been developed,which creates microchannels that facilitate drug delivery.In this report,drug-loaded degradable conic microneedles are modeled to characterize the degradation rate and drug release profile.Since a lot of data are available for polylactic acid-co-glycolic acid(PLGA)degradation in the literature,PLGA of various molecular weights-as a biodegradable polymer in the polyester family-is used for modeling and verification of the drug delivery in themicroneedles.The main reaction occurring during polyester degradation is hydrolysis of steric bonds,leading to molecular weight reduction.The acid produced in the degradation has a catalytic effect on the reaction.Changes in water,acid and steric bond concentrations over time and for different radii of microneedles are investigated.To solve the partial and ordinary differential equations simultaneously,finite difference and Runge–Kutta methods are employed,respectively,with the aid of MATLAB.Correlation of the polymer degradation rate with its molecular weight and molecular weight changes versus time are illustrated.Also,drug diffusivity is related to matrix molecular weight.The molecular weight reduction and accumulative drug release within the system are predicted.In order to validate and assess the proposed model,data series of the hydrolytic degradation of aspirin(180.16 Da)-and albumin(66,000 Da)-loaded PLGA(1:1 molar ratio)are used for comparison.The proposed model is in good agreement with experimental data from the literature.Considering diffusion as themain phenomena and autocatalytic effects in the reaction,the drug release profile is predicted.Based on our results for a microneedle containing drug,we are able to estimate drug release rates before fabrication.展开更多
The demand for alternative low-grade iron ores is on the rise due to the rapid depletion of high-grade natural iron ore resources and the increased need for steel usage in daily life.However,the use of low-grade iron ...The demand for alternative low-grade iron ores is on the rise due to the rapid depletion of high-grade natural iron ore resources and the increased need for steel usage in daily life.However,the use of low-grade iron ores is a constant clinical task for industry metallurgists.Direct smelting of low-grade ores consumes a substantial amount of energy due to the large volume of slag generated.This condition can be avoided by direct reduction followed by magnetic separation(to separate the high amount of gangue or refractory and metal parts)and smelting.Chromite overburden(COB)is a mine waste generated in chromite ore processing,and it mainly consists of iron,chromium,and nickel(<1wt%).In the present work,the isothermal and non-isothermal kinetics of the solid-state reduction of self-reduced pellets prepared using low-grade iron ore(COB)were thoroughly investigated via thermal analysis.The results showed that the reduction of pellets followed a firstorder autocatalytic reaction control mechanism in the temperature range of 900-1100℃.The autocatalytic nature of the reduction reaction was due to the presence of nickel in the COB.The apparent activation energy obtained from the kinetics results showed that the solid-state reactions between COB and carbon were the rate-determining step in iron oxide reduction.展开更多
Pattern formation is a very interesting phenomenon formed above a water anode in atmospheric pressure glow discharge.Up to now,concentric-ring patterns only less than four rings have been observed in experiments.In th...Pattern formation is a very interesting phenomenon formed above a water anode in atmospheric pressure glow discharge.Up to now,concentric-ring patterns only less than four rings have been observed in experiments.In this work,atmospheric pressure glow discharge above a water anode is conducted to produce diversified concentric-ring patterns.Results indicate that as time elapses,the number of concentric rings increases continuously and up to five rings have been found in the concentric-ring patterns.Moreover,the ring number increases continuously with increasing discharge current.The electrical conductivity of the anode plays an important role in the transition of the concentric patterns due to its positive relation with ionic strength.Hence,the electrical conductivity of the water anode is investigated as a function of time and discharge current.From optical emission spectrum,gas temperature and intensity ratio related with density and temperature of electron have been calculated.The various concentric-ring patterns mentioned above have been simulated at last with an autocatalytic reaction model.展开更多
Magnesium (Mg) and its alloys are one of a novel kind of biodegradable metallic implants which attracted much fundamental research to develop its clinical application. Nevertheless, it has more restrictions in biomedi...Magnesium (Mg) and its alloys are one of a novel kind of biodegradable metallic implants which attracted much fundamental research to develop its clinical application. Nevertheless, it has more restrictions in biomedical applications because it degrades too fast at the early stage after implantation, thus commonly leading to some problems such as early fast mechanical loss, hydric bubble aggregation, gap formation between the implants and the tissue. This work aims to study the effect of 0.5 wt% Sb addition on the microstructure, mechanical properties and degradation behavior of as cast Mg-4wt% Zn alloy. The evaluation process was conducted using optical and scanning electron microscopy, X-ray diffraction, tensile and compression tests, in addition to a corrosion study by immersing in simulated body fluid (SBF). Results showed that Sb refines the grain size of the base alloy and also enhances its mechanical properties and degradation rate as well. These were due to the formation of the secondary phase of Mg3Sb2. To get better degradation rate, the Mg-4wt% Zn and Mg-4wt% Zn-0.5wt% Sb alloys are coated with Ca-P using autocatalytic technique. The results demonstrated that the formed coat layer improves the degradation rate of samples under the condition of this study. The current study shows that Mg-4wt% Zn-0.5wt% Sb alloy has good mechanical properties and when it coated by Ca-P, it gave a better corrosion resistance that makes it ideal for biodegradable medical application.展开更多
Differential scanning calorimetry(DSC)was used to investigate the thermal decomposition and thermal safety characteristics of Shuangfang-3(SF-3)gun propellant.The kinetic calculation of the DSC curve was carried out b...Differential scanning calorimetry(DSC)was used to investigate the thermal decomposition and thermal safety characteristics of Shuangfang-3(SF-3)gun propellant.The kinetic calculation of the DSC curve was carried out by Kissinger and Friedman models,and the time to the maximum rate under adiabatic conditions and the self-accelerating decomposition temperature were calculated by using the AKTS thermal analysis software in combination with the heat balance equation.The thermal history experiment was carried out to further analyze the autocatalytic properties of SF-3.The results show that the initial decomposition temperature,decomposition peak temperature,and decomposition completion temperature of SF-3 all move to the high temperature direction with the increase of heating rate,and the average decomposition heat is 1521.4 J/g.The kinetic model showcased that SF-3 has different reactions in different reaction stages,and its apparent activation energy is 168.2 kJ/mol.When the times to maximum rate under adiabatic conditions are 2.0 h,4.0 h,8.0 h,24.0 h,respectively,the corresponding temperatures are 130.7℃,124.8℃,119.2℃and 110.5℃,respectively.When the masses are 5.0 kg,15.0 kg,25.0 kg,50.0 kg,100.0 kg,respectively,the corresponding self-accelerating decomposition temperatures are 110.0℃,105.0℃,102.0℃,99.0℃and 96.0℃,respectively.As the packaging mass increases,it is more difficult to exchange the liberated heat into the surrounding environment and its safety would be further reduced.The thermal history experiment demonstrates that the thermal decomposition of SF-3 is an n-stage reaction and does not have autocatalytic properties.Therefore,the size and ventilation conditions of the sample have a certain impact on the storage stability of SF-3.In the actual production,usage,storage and transportation,sample size and ventilation conditions should be controlled,and practical and effective measures should be taken according to the actual situation.展开更多
Early-age hydration of Ordinary Portland Cement (OPC) was studied in the presence of two additional surfaces. Additional surfaces are known to accelerate the early-age hydration of OPC. Autocatalytic reaction modellin...Early-age hydration of Ordinary Portland Cement (OPC) was studied in the presence of two additional surfaces. Additional surfaces are known to accelerate the early-age hydration of OPC. Autocatalytic reaction modelling was used to determine acceleration mechanism of additional surfaces. Heat development of the hydration was measured with semi-adiabatic calorimetry and the results were modelled with an autocatalytic reaction. Autocatalytic reaction modelling was able to determine number of initially active nucleation sites in early-age hydration. OPC hydration followed autocatalytic reaction principles throughout induction period and accelerating period. Both of the added surfaces, limestone filler and calcium-silicate-hydrate (C-S-H) coated limestone filler accelerated the early-age hydration. According to autocatalytic modelling, the C-S-H coated filler increased the number of initially active nucleation sites. Pristine limestone filler accelerated the early-age hydration by providing the additional nucleation sites throughout the early-age hydration. The difference was explained with common theories of nucleation and crystal growth. Autocatalytic model and measured calorimeter curve started to significantly deviate at the inflection point, where the reaction mode changed. The reaction mode change depended on the average particle distance. Early-age hydration, modelled as autocatalytic reaction was able to improve understanding of OPC early-age hydration and quantify the number of initially active nucleation sites. Understanding and quantifying the acceleration mechanisms in early-age hydration will aid larger utilization of supplementary cementitious materials where understanding the early-age strength development is crucial.展开更多
Among the factors which restrict the large-scale utilization of magnesium-based hydride as a hydrogen storage medium,the high operating temperature,slow kinetics,and air stability in particular are key obstacles.In th...Among the factors which restrict the large-scale utilization of magnesium-based hydride as a hydrogen storage medium,the high operating temperature,slow kinetics,and air stability in particular are key obstacles.In this work,a novel method,namely hydriding combustion synthesis plus short-term mechanical milling followed by air exposure,was proposed to synthesize air stable and autocatalytic magnesium nickel hydride(Mg2NiH4),which shows excellent hydrogen absorption/desorption kinetics,capacity retention and oxidation resistance.The short-term-milled Mg2NiH4 can desorb 2.97 wt.%hydrogen within 500 s at 230℃.Even after exposure under air atmosphere for 67 days,it can still desorb 2.88 wt.%hydrogen within 500 s at 230℃.The experimental and theoretical results both indicated that the surface of as-milled Mg2NiH4 was easy to be oxidized under air atmosphere.However,the in-situ formed Ni during air exposure of Mg2NiH4 improved the hydrogen desorption kinetics,and the formed surface passivation layer maintained the hydrogen storage capacity and avoided further poisoning,which we called autocatalytic and self-protective effect.Such a novel dual effect modified the reaction activity and oxidation resistance of the air-exposed Mg2NiH4.Our findings provide useful insights into the design and preparation of air stable metal-based hydride for large-scale utilization and long-term storage.展开更多
In this paper, two irreversible exothermic autocatalytic reactions which carry out in continuous stirred tank reactor (CSTR) are considered. A differential-algebraic system is applied to model these chemical reactio...In this paper, two irreversible exothermic autocatalytic reactions which carry out in continuous stirred tank reactor (CSTR) are considered. A differential-algebraic system is applied to model these chemical reactions. The stability and the dynamic behavior are studied for the differential-algebraic system. The Hopf bifurcation appears when the parameter exceeds a critical value. In order to eliminate this complex behavior, the differential-algebraic system is described by a single-input and single-output system with parameter varying within definite intervals, and then variable structure control with sliding mode based on a special power reaching law is designed to stabilize this chemical system. Numerical simulations are given to illustrate the effectiveness of the method.展开更多
The kinetics of the first order autocatalytic decomposition reaction of nitrocellulose (NC, 13.86% N) was stud-ied by using DSC. The results show that the DSC curve for the initial 50% of conversion degree of NC can b...The kinetics of the first order autocatalytic decomposition reaction of nitrocellulose (NC, 13.86% N) was stud-ied by using DSC. The results show that the DSC curve for the initial 50% of conversion degree of NC can be de-scribed by the first order autocatalytic equation dy/dt=-10^(16.3)exp(-181860/RT)y-10^(16.7)exp(-173050/RT)y(1-y) and that for the latter 50% conversiondegree of NC described by the reaction equations dy/dt=-10^(16.4)exp(-154820/RT)y(n=1) and dy/dt=-10^(16.9)exp(-155270/RT)y^(2.80)(n≠1).展开更多
Morphology engineering has been developed as one of the most widely used strategies for improving the performance of electrocatalysts.However,the harsh reaction conditions and cumbersome reaction steps during the nano...Morphology engineering has been developed as one of the most widely used strategies for improving the performance of electrocatalysts.However,the harsh reaction conditions and cumbersome reaction steps during the nanomaterials synthesis still limit their industrial applications.Herein,one-dimensional(1D)novel-segmented PtTe porous nanochains(PNCs)were successfully synthesized by the template methods assisted by Pt autocatalytic reduction.The PtTe PNCs consist of consecutive mesoporous architectures that provide a large electrochemical surface area(ECSA)and abundant active sites to enhance methanol oxidation reaction(MOR).Furthermore,1D nanostructure as a robust sustaining frame can maintain a high mass/charge transfer rate in a long-term durability test.After 2,000 cyclic voltammetry(CV)cycles,the ECSA value of PtTe PNCs remained as high as 44.47 m^(2)·gPt^(-1),which was much larger than that of commercial Pt/C(3.95 m^(2)·gPt^(-1)).The high catalytic activity and durability of PtTe PNCs are also supported by CO stripping test and density functional theory calculation.This autocatalytic reduction-assisted synthesis provides new insights for designing efficient low-dimensional nanocatalysts.展开更多
Background To express in vitro the bovine enterokinase catalytic subunit (EKL) protein, which could be used in the future for the cleavage and purification of fusion proteins.Methods Bovine enterokinase catalytic subu...Background To express in vitro the bovine enterokinase catalytic subunit (EKL) protein, which could be used in the future for the cleavage and purification of fusion proteins.Methods Bovine enterokinase catalytic subunit cDNA was obtained by RT-PCR from the duodenal mucosa of a bovine obtained at a wholesale market, and then cloned into a pUCmT cloning vector and sequenced. The desired gene fragment was inserted into a pET39b expression plasmid and the recombinant vector pET39b-EKL was transformed into E. coli BL21 (DE3). Protein expression was induced using IPTG. The recombinant DsbA-EKL was purified with His · Tag affinity chromatography, and its bioactivity was analyzed.Results Compared with the sequence deposited in GenBank, the sequence of the EKL gene cloned in the present study is correct. It was also confirmed that the nucleotide sequence of expression plasmid pET39b-EKL was correct at the conjunction site between the recombinant DMA 5' terminal multi-cloning site and the recombinant fragment. SDS-PAGE analysis indicated that the target product was about 65 kDa and represented 28% of total cell protein. Purified recombinant protein was obtained by metal chelating chromatography using a Ni-IDA resin. After desalting and changing the buffer, the crude kinase was incubated at 211 overnight and shown to have a high autocatalytic cleavage activity.Conclusion The EKL gene from a Chinese bovine has been cloned successfully and expressed. This investigation has layed the foundation for future enterokinase activity research and for further large-scale application of expression products.展开更多
A bulk polymerization monomer dehydroabietic acid-(2-acryloyloxy-ethoxy)-ethyl ester(DHADG-AC) was synthesized from dehydroabietic acid(DHA). The chemical structure of DHA-DG-AC was characterized by1~HNMR,(13)~CNMR, M...A bulk polymerization monomer dehydroabietic acid-(2-acryloyloxy-ethoxy)-ethyl ester(DHADG-AC) was synthesized from dehydroabietic acid(DHA). The chemical structure of DHA-DG-AC was characterized by1~HNMR,(13)~CNMR, MS and FT-IR. The kinetics of the bulk polymerization of DHA-DG-AC was investigated by Differential Scanning Calorimeter(DSC).Two kinds of kinetic model(nth-order model and autocatalytic model) were used to investigate the polymerization process. The results showed that the experim e nt al DSC c u r ve s w e r e c o n si st e nt wi th t he computational data generated by the autocatalytic kinetic model, and the value of E_a was 95.73 k J·mol^(–1).展开更多
Creating a man-made life in the laboratory is one of life science's most intriguing yet challenging problems.Advances in synthetic biology and related theories,particularly those related to the origin of life,have...Creating a man-made life in the laboratory is one of life science's most intriguing yet challenging problems.Advances in synthetic biology and related theories,particularly those related to the origin of life,have laid the groundwork for further exploration and understanding in this field of artificial life or man-made life.But there remains a wealth of quantitative mathematical models and tools that have yet to be applied to this area.In this paper,we review the two main approaches often employed in the field of man-made life:the top-down approach that reduces the complexity of extant and existing living systems and the bottom-up approach that integrates welldefined components,by introducing the theoretical basis,recent advances,and their limitations.We then argue for another possible approach,namely"bottom-up from the origin of life":Starting with the establishment of autocatalytic chemical reaction networks that employ physical boundaries as the initial compartments,then designing directed evolutionary systems,with the expectation that independent compartments will eventually emerge so that the system becomes free-living.This approach is actually analogous to the process of how life originated.With this paper,we aim to stimulate the interest of synthetic biologists and experimentalists to consider a more theoretical perspective,and to promote the communication between the origin of life community and the synthetic man-made life community.展开更多
A method of estimating the kinetic parameters and the critical rate of temperature rise in the thermal explosion for the autocatalytic decomposition of 3,4-bis(4'-nitrofurazan-3'-yl)-2-oxofurazan (BNFOF) with no...A method of estimating the kinetic parameters and the critical rate of temperature rise in the thermal explosion for the autocatalytic decomposition of 3,4-bis(4'-nitrofurazan-3'-yl)-2-oxofurazan (BNFOF) with non-isothermal differential scanning calorimetry (DSC) was presented. The rate equation for the decomposition of BNFOF was cstablished, and information was obtained on the rate of temperature increase in BNFOF when the empiric-order autocatalytic decomposition was converted into thermal explosion.展开更多
文摘An autocatalytic biochemical system in the presence of recycling enzyme is solved numerically using two numerical methods based on finite difference schemes. The first method is the well known Euler method which is an explicit method, whereas the second method is implicit. Although the implicit method, method 2, is first-order accurate in time it converges to the fixed point(s) for large time step, L Numerical results show the existence of hard excitation and birhythmicity.
基金Supported by the National Natural Science Foundation of China (No. 20176046).
文摘A modified genetic algorithm of multiple selection strategies, crossover strategies and adaptive operator is constructed, and it is used to estimate the kinetic parameters in autocatalytic oxidation of cyclohexane. The influences of selection strategy, crossover strategy and mutation strategy on algorithm performance are discussed. This algorithm with a specially designed adaptive operator avoids the problem of local optimum usually associated with using standard genetic algorithm and simplex method. The kinetic parameters obtained from the modified genetic algorithm are credible and the calculation results using these parameters agree well with experimental data. Furthermore, a new kinetic model of cyclohexane autocatalytic oxidation is established and the kinetic parameters are estimated by using the modified genetic algorithm.
文摘Hydrogen challenge mitigation stands as one of the main objectives in the management of severe accidents at Nuclear Power Plants (NPPs). Key strategies for hydrogen control include atmospheric inertization and hydrogen removal with Passive Autocatalytic Recombiners (PARs) being a commonly accepted approach. However, an examination of PAR operation specificity reveals potential inefficiencies and reliability issues in certain severe accident scenarios. Moreover, during the in-vessel stage of severe accident development, in some severe accident scenarios PARs can unexpectedly become a source of hydrogen detonation. The effectiveness of hydrogen removal systems depends on various factors, including the chosen strategies, severe accident scenarios, reactor building design, and other influencing factors. Consequently, a comprehensive hydrogen mitigation strategy must effectively incorporate a combination of strategies rather than be based on one strategy, taking into consideration the probabilistic risks and uncertainties associated with the implementation of PARs or other traditional methods. In response to these considerations, within the framework of this research it has been suggested a conceptual strategy to mitigate the hydrogen challenge during the in-vessel stage of severe accident development.
文摘Transdermal drug delivery systems have overcome many limitations of other drug administration routes,such as injection pain and first-pass metabolism following oral route,although transdermal drug delivery systems are limited to drugs with low molecular weight.Hence,new emerging technology allowing high molecular weight drug delivery across the skin—known as‘microneedles’—has been developed,which creates microchannels that facilitate drug delivery.In this report,drug-loaded degradable conic microneedles are modeled to characterize the degradation rate and drug release profile.Since a lot of data are available for polylactic acid-co-glycolic acid(PLGA)degradation in the literature,PLGA of various molecular weights-as a biodegradable polymer in the polyester family-is used for modeling and verification of the drug delivery in themicroneedles.The main reaction occurring during polyester degradation is hydrolysis of steric bonds,leading to molecular weight reduction.The acid produced in the degradation has a catalytic effect on the reaction.Changes in water,acid and steric bond concentrations over time and for different radii of microneedles are investigated.To solve the partial and ordinary differential equations simultaneously,finite difference and Runge–Kutta methods are employed,respectively,with the aid of MATLAB.Correlation of the polymer degradation rate with its molecular weight and molecular weight changes versus time are illustrated.Also,drug diffusivity is related to matrix molecular weight.The molecular weight reduction and accumulative drug release within the system are predicted.In order to validate and assess the proposed model,data series of the hydrolytic degradation of aspirin(180.16 Da)-and albumin(66,000 Da)-loaded PLGA(1:1 molar ratio)are used for comparison.The proposed model is in good agreement with experimental data from the literature.Considering diffusion as themain phenomena and autocatalytic effects in the reaction,the drug release profile is predicted.Based on our results for a microneedle containing drug,we are able to estimate drug release rates before fabrication.
文摘The demand for alternative low-grade iron ores is on the rise due to the rapid depletion of high-grade natural iron ore resources and the increased need for steel usage in daily life.However,the use of low-grade iron ores is a constant clinical task for industry metallurgists.Direct smelting of low-grade ores consumes a substantial amount of energy due to the large volume of slag generated.This condition can be avoided by direct reduction followed by magnetic separation(to separate the high amount of gangue or refractory and metal parts)and smelting.Chromite overburden(COB)is a mine waste generated in chromite ore processing,and it mainly consists of iron,chromium,and nickel(<1wt%).In the present work,the isothermal and non-isothermal kinetics of the solid-state reduction of self-reduced pellets prepared using low-grade iron ore(COB)were thoroughly investigated via thermal analysis.The results showed that the reduction of pellets followed a firstorder autocatalytic reaction control mechanism in the temperature range of 900-1100℃.The autocatalytic nature of the reduction reaction was due to the presence of nickel in the COB.The apparent activation energy obtained from the kinetics results showed that the solid-state reactions between COB and carbon were the rate-determining step in iron oxide reduction.
基金financially supported by National Natural Science Foundation of China(Nos.11875121 and 51977057)Natural Science Interdisciplinary Research Program of Hebei University(Nos.DXK201908 and DXK202011)+2 种基金Natural Science Foundation of Hebei Province,China(Nos.A2020201025 and A2019201100)the financial support from Post-Graduate’s Innovation Fund Project of Hebei Province(Nos.CXZZBS2019023 and CXZZBS2019029)Post-Graduate’s Innovation Fund Project of Hebei University(Nos.HBU2021ss063 and HBU2021bs011)。
文摘Pattern formation is a very interesting phenomenon formed above a water anode in atmospheric pressure glow discharge.Up to now,concentric-ring patterns only less than four rings have been observed in experiments.In this work,atmospheric pressure glow discharge above a water anode is conducted to produce diversified concentric-ring patterns.Results indicate that as time elapses,the number of concentric rings increases continuously and up to five rings have been found in the concentric-ring patterns.Moreover,the ring number increases continuously with increasing discharge current.The electrical conductivity of the anode plays an important role in the transition of the concentric patterns due to its positive relation with ionic strength.Hence,the electrical conductivity of the water anode is investigated as a function of time and discharge current.From optical emission spectrum,gas temperature and intensity ratio related with density and temperature of electron have been calculated.The various concentric-ring patterns mentioned above have been simulated at last with an autocatalytic reaction model.
文摘Magnesium (Mg) and its alloys are one of a novel kind of biodegradable metallic implants which attracted much fundamental research to develop its clinical application. Nevertheless, it has more restrictions in biomedical applications because it degrades too fast at the early stage after implantation, thus commonly leading to some problems such as early fast mechanical loss, hydric bubble aggregation, gap formation between the implants and the tissue. This work aims to study the effect of 0.5 wt% Sb addition on the microstructure, mechanical properties and degradation behavior of as cast Mg-4wt% Zn alloy. The evaluation process was conducted using optical and scanning electron microscopy, X-ray diffraction, tensile and compression tests, in addition to a corrosion study by immersing in simulated body fluid (SBF). Results showed that Sb refines the grain size of the base alloy and also enhances its mechanical properties and degradation rate as well. These were due to the formation of the secondary phase of Mg3Sb2. To get better degradation rate, the Mg-4wt% Zn and Mg-4wt% Zn-0.5wt% Sb alloys are coated with Ca-P using autocatalytic technique. The results demonstrated that the formed coat layer improves the degradation rate of samples under the condition of this study. The current study shows that Mg-4wt% Zn-0.5wt% Sb alloy has good mechanical properties and when it coated by Ca-P, it gave a better corrosion resistance that makes it ideal for biodegradable medical application.
基金Key Research and Development Project of Shanxi Province(No.201903D121028)。
文摘Differential scanning calorimetry(DSC)was used to investigate the thermal decomposition and thermal safety characteristics of Shuangfang-3(SF-3)gun propellant.The kinetic calculation of the DSC curve was carried out by Kissinger and Friedman models,and the time to the maximum rate under adiabatic conditions and the self-accelerating decomposition temperature were calculated by using the AKTS thermal analysis software in combination with the heat balance equation.The thermal history experiment was carried out to further analyze the autocatalytic properties of SF-3.The results show that the initial decomposition temperature,decomposition peak temperature,and decomposition completion temperature of SF-3 all move to the high temperature direction with the increase of heating rate,and the average decomposition heat is 1521.4 J/g.The kinetic model showcased that SF-3 has different reactions in different reaction stages,and its apparent activation energy is 168.2 kJ/mol.When the times to maximum rate under adiabatic conditions are 2.0 h,4.0 h,8.0 h,24.0 h,respectively,the corresponding temperatures are 130.7℃,124.8℃,119.2℃and 110.5℃,respectively.When the masses are 5.0 kg,15.0 kg,25.0 kg,50.0 kg,100.0 kg,respectively,the corresponding self-accelerating decomposition temperatures are 110.0℃,105.0℃,102.0℃,99.0℃and 96.0℃,respectively.As the packaging mass increases,it is more difficult to exchange the liberated heat into the surrounding environment and its safety would be further reduced.The thermal history experiment demonstrates that the thermal decomposition of SF-3 is an n-stage reaction and does not have autocatalytic properties.Therefore,the size and ventilation conditions of the sample have a certain impact on the storage stability of SF-3.In the actual production,usage,storage and transportation,sample size and ventilation conditions should be controlled,and practical and effective measures should be taken according to the actual situation.
基金supported by the Finnish Funding Agency for Technology and Innovation,Nordkalk Oy Ab,Cementa Ab and Tikkurila Oyj.
文摘Early-age hydration of Ordinary Portland Cement (OPC) was studied in the presence of two additional surfaces. Additional surfaces are known to accelerate the early-age hydration of OPC. Autocatalytic reaction modelling was used to determine acceleration mechanism of additional surfaces. Heat development of the hydration was measured with semi-adiabatic calorimetry and the results were modelled with an autocatalytic reaction. Autocatalytic reaction modelling was able to determine number of initially active nucleation sites in early-age hydration. OPC hydration followed autocatalytic reaction principles throughout induction period and accelerating period. Both of the added surfaces, limestone filler and calcium-silicate-hydrate (C-S-H) coated limestone filler accelerated the early-age hydration. According to autocatalytic modelling, the C-S-H coated filler increased the number of initially active nucleation sites. Pristine limestone filler accelerated the early-age hydration by providing the additional nucleation sites throughout the early-age hydration. The difference was explained with common theories of nucleation and crystal growth. Autocatalytic model and measured calorimeter curve started to significantly deviate at the inflection point, where the reaction mode changed. The reaction mode change depended on the average particle distance. Early-age hydration, modelled as autocatalytic reaction was able to improve understanding of OPC early-age hydration and quantify the number of initially active nucleation sites. Understanding and quantifying the acceleration mechanisms in early-age hydration will aid larger utilization of supplementary cementitious materials where understanding the early-age strength development is crucial.
基金the National Natural Science Foundation of China(Nos.51771092,52071177,and 21975125)Six Talent Peaks Project in Jiangsu Province(No.2018-XNY-020)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions.
文摘Among the factors which restrict the large-scale utilization of magnesium-based hydride as a hydrogen storage medium,the high operating temperature,slow kinetics,and air stability in particular are key obstacles.In this work,a novel method,namely hydriding combustion synthesis plus short-term mechanical milling followed by air exposure,was proposed to synthesize air stable and autocatalytic magnesium nickel hydride(Mg2NiH4),which shows excellent hydrogen absorption/desorption kinetics,capacity retention and oxidation resistance.The short-term-milled Mg2NiH4 can desorb 2.97 wt.%hydrogen within 500 s at 230℃.Even after exposure under air atmosphere for 67 days,it can still desorb 2.88 wt.%hydrogen within 500 s at 230℃.The experimental and theoretical results both indicated that the surface of as-milled Mg2NiH4 was easy to be oxidized under air atmosphere.However,the in-situ formed Ni during air exposure of Mg2NiH4 improved the hydrogen desorption kinetics,and the formed surface passivation layer maintained the hydrogen storage capacity and avoided further poisoning,which we called autocatalytic and self-protective effect.Such a novel dual effect modified the reaction activity and oxidation resistance of the air-exposed Mg2NiH4.Our findings provide useful insights into the design and preparation of air stable metal-based hydride for large-scale utilization and long-term storage.
文摘In this paper, two irreversible exothermic autocatalytic reactions which carry out in continuous stirred tank reactor (CSTR) are considered. A differential-algebraic system is applied to model these chemical reactions. The stability and the dynamic behavior are studied for the differential-algebraic system. The Hopf bifurcation appears when the parameter exceeds a critical value. In order to eliminate this complex behavior, the differential-algebraic system is described by a single-input and single-output system with parameter varying within definite intervals, and then variable structure control with sliding mode based on a special power reaching law is designed to stabilize this chemical system. Numerical simulations are given to illustrate the effectiveness of the method.
基金the Science and Technology Foundation of Shaanxi Key Laboratory of Physico-Inorganic Chemistry (No. 29-3, 2001), and the Science and Technology Foundation (No. 514550101) of Propellant and Explosive Combustion of China.
文摘The kinetics of the first order autocatalytic decomposition reaction of nitrocellulose (NC, 13.86% N) was stud-ied by using DSC. The results show that the DSC curve for the initial 50% of conversion degree of NC can be de-scribed by the first order autocatalytic equation dy/dt=-10^(16.3)exp(-181860/RT)y-10^(16.7)exp(-173050/RT)y(1-y) and that for the latter 50% conversiondegree of NC described by the reaction equations dy/dt=-10^(16.4)exp(-154820/RT)y(n=1) and dy/dt=-10^(16.9)exp(-155270/RT)y^(2.80)(n≠1).
基金This work was supported by the National Natural Science Foundation of China(Nos.52171051,52130103,52271237,52271163,51971026,12034002,and 11904025)the Natural Science Foundation of Henan province(No.222300420086).We thank Dr.Song Hong from the Electron Microscopy Laboratory at Beijing University of Chemical Technology for the help with the aberration-corrected transmission electron microscope.
文摘Morphology engineering has been developed as one of the most widely used strategies for improving the performance of electrocatalysts.However,the harsh reaction conditions and cumbersome reaction steps during the nanomaterials synthesis still limit their industrial applications.Herein,one-dimensional(1D)novel-segmented PtTe porous nanochains(PNCs)were successfully synthesized by the template methods assisted by Pt autocatalytic reduction.The PtTe PNCs consist of consecutive mesoporous architectures that provide a large electrochemical surface area(ECSA)and abundant active sites to enhance methanol oxidation reaction(MOR).Furthermore,1D nanostructure as a robust sustaining frame can maintain a high mass/charge transfer rate in a long-term durability test.After 2,000 cyclic voltammetry(CV)cycles,the ECSA value of PtTe PNCs remained as high as 44.47 m^(2)·gPt^(-1),which was much larger than that of commercial Pt/C(3.95 m^(2)·gPt^(-1)).The high catalytic activity and durability of PtTe PNCs are also supported by CO stripping test and density functional theory calculation.This autocatalytic reduction-assisted synthesis provides new insights for designing efficient low-dimensional nanocatalysts.
基金This study was supported by a National ' 95 ' Key Project grant (No. 96-C02-01-04).
文摘Background To express in vitro the bovine enterokinase catalytic subunit (EKL) protein, which could be used in the future for the cleavage and purification of fusion proteins.Methods Bovine enterokinase catalytic subunit cDNA was obtained by RT-PCR from the duodenal mucosa of a bovine obtained at a wholesale market, and then cloned into a pUCmT cloning vector and sequenced. The desired gene fragment was inserted into a pET39b expression plasmid and the recombinant vector pET39b-EKL was transformed into E. coli BL21 (DE3). Protein expression was induced using IPTG. The recombinant DsbA-EKL was purified with His · Tag affinity chromatography, and its bioactivity was analyzed.Results Compared with the sequence deposited in GenBank, the sequence of the EKL gene cloned in the present study is correct. It was also confirmed that the nucleotide sequence of expression plasmid pET39b-EKL was correct at the conjunction site between the recombinant DMA 5' terminal multi-cloning site and the recombinant fragment. SDS-PAGE analysis indicated that the target product was about 65 kDa and represented 28% of total cell protein. Purified recombinant protein was obtained by metal chelating chromatography using a Ni-IDA resin. After desalting and changing the buffer, the crude kinase was incubated at 211 overnight and shown to have a high autocatalytic cleavage activity.Conclusion The EKL gene from a Chinese bovine has been cloned successfully and expressed. This investigation has layed the foundation for future enterokinase activity research and for further large-scale application of expression products.
基金supported by the National Natural Science Foundation of China (31470597)
文摘A bulk polymerization monomer dehydroabietic acid-(2-acryloyloxy-ethoxy)-ethyl ester(DHADG-AC) was synthesized from dehydroabietic acid(DHA). The chemical structure of DHA-DG-AC was characterized by1~HNMR,(13)~CNMR, MS and FT-IR. The kinetics of the bulk polymerization of DHA-DG-AC was investigated by Differential Scanning Calorimeter(DSC).Two kinds of kinetic model(nth-order model and autocatalytic model) were used to investigate the polymerization process. The results showed that the experim e nt al DSC c u r ve s w e r e c o n si st e nt wi th t he computational data generated by the autocatalytic kinetic model, and the value of E_a was 95.73 k J·mol^(–1).
基金National Natural Science Foundation of China,Grant/Award Numbers:12205012,71731002Beijing Normal University via the Youth Talent Strategic Program,Grant/Award Number:28705-310432106Atlas Project of bio-archae by Swarma Research。
文摘Creating a man-made life in the laboratory is one of life science's most intriguing yet challenging problems.Advances in synthetic biology and related theories,particularly those related to the origin of life,have laid the groundwork for further exploration and understanding in this field of artificial life or man-made life.But there remains a wealth of quantitative mathematical models and tools that have yet to be applied to this area.In this paper,we review the two main approaches often employed in the field of man-made life:the top-down approach that reduces the complexity of extant and existing living systems and the bottom-up approach that integrates welldefined components,by introducing the theoretical basis,recent advances,and their limitations.We then argue for another possible approach,namely"bottom-up from the origin of life":Starting with the establishment of autocatalytic chemical reaction networks that employ physical boundaries as the initial compartments,then designing directed evolutionary systems,with the expectation that independent compartments will eventually emerge so that the system becomes free-living.This approach is actually analogous to the process of how life originated.With this paper,we aim to stimulate the interest of synthetic biologists and experimentalists to consider a more theoretical perspective,and to promote the communication between the origin of life community and the synthetic man-made life community.
基金Project supported by the National Natural Science Foundation of China (No. 20573098), the Science and Technology Foundataon of the National Defence Key Laboratory of Propellant and Explosive Combustion of China (No. 51455010).
文摘A method of estimating the kinetic parameters and the critical rate of temperature rise in the thermal explosion for the autocatalytic decomposition of 3,4-bis(4'-nitrofurazan-3'-yl)-2-oxofurazan (BNFOF) with non-isothermal differential scanning calorimetry (DSC) was presented. The rate equation for the decomposition of BNFOF was cstablished, and information was obtained on the rate of temperature increase in BNFOF when the empiric-order autocatalytic decomposition was converted into thermal explosion.