Spermatogenesis is a complex process regulated by endocrine and testicular paracrine/autocrine factors. Gonadotropins are involved in the regulation of several testicular paracrine factors, mainly of the IL-1 family a...Spermatogenesis is a complex process regulated by endocrine and testicular paracrine/autocrine factors. Gonadotropins are involved in the regulation of several testicular paracrine factors, mainly of the IL-1 family and testicular hormones. Testicular cytokines and growth factors (such as IL-1, IL-6, TNF, IFN-γ, LIF and SCF) were shown to affect both the germ cell proliferation and the Leydig and Sertoli cells functions and secretion. Cytokines and growth factors are produced by immune cells and in the interstitial and seminiferous tubular compartments by various testicular cells, including Sertoli, Leydig, peritubular cells, spermatogonia, differentiated spermatogonia and even spermatozoa. Corresponding cytokine and growth factor receptors were demonstrated on some of the testicular cells. These cytokines also control the secretion of the gonadotropins and testosterone in the testis. Under pathological conditions the levels of pro-inflammatory cytokines are increased and negatively affected spermatogenesis. Thus, the expression levels and the mechanisms involved in the regulation of testicular paracrine/autocrine factors should be considered in future therapeutic strategies for male infertility.展开更多
AIM: To explore the role of SF/HGF-Met autocrine and paracrine in metastasis of hepatocellular carcinoma (HCC). METHODS: SF/HGF and c-met transcription and protein expression in HCC were examined by RT-PCR and Western...AIM: To explore the role of SF/HGF-Met autocrine and paracrine in metastasis of hepatocellular carcinoma (HCC). METHODS: SF/HGF and c-met transcription and protein expression in HCC were examined by RT-PCR and Western Blot in 4 HCC cell lines, including HepG2, Hep3B, SMMC7721 and MHCC-1, the last cell line had a higher potential of metastasis. sf/hgf cDNA was transfected by the method of Lipofectin into SMMC7721. SF/HGF and c-met antibody were used to stimulate and block SF/HGF-c-met signal transduction. Cell morphology, mobility, and proliferation were respectively compared by microscopic observation, wound healing assay and cell growth curve. RESULTS: HCC malignancy appeared to be relative to its met-SF/HGF expression. In MHCC-1, c-met expression was much stronger than that in other cell lines with lower potential of metastasis and only SF/HGF autocrine existed in MHCC-1. After sf/hgf cDNA transfection or conditioned medium of MHCC-1 stimulation, SMMC7721 changed into elongated morphology, and the abilities of proliferation (P 【 0.05) and mobility increased. Such bio-activity could be blocked by c-met antibody (P 【 0.05). CONCLUSION: The system of SF/HGF-c-met autocrine and paracrine played an important role in development and metastasis potential of HCC. Inhibition of SF/HGF-c-met signal transduction system may reduce the growth and metastasis of HCC.展开更多
This is first report about the simultaneous over-expression of both Insulin-like growth factor (IGF- I ) and its receptor (IGF- I R) at mRNA level in human primary hepatic Cancer (PHC). In 10 PHC samples from China, I...This is first report about the simultaneous over-expression of both Insulin-like growth factor (IGF- I ) and its receptor (IGF- I R) at mRNA level in human primary hepatic Cancer (PHC). In 10 PHC samples from China, IGF-I and IGF- I R were both over-expressed, whereas only a background signal was detected in normal liver. In 5 pairs of PHC and its non- tumorous adjacent liver tissues from South Africa, IGF- I and IGF- I R were also over-expressed in PHC. mRNA expression of IGF- I in all 5 cases and IGF- I R in 4 of 5 cases were higher in cancer than non- tumorous adjacent liver tissues. These results strongly implicate that an autocrine and/ or paracrine mechanism might be Involved in formation and progression of PHC.展开更多
Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and na...Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and natural skin are substantially different.Here,we developed a polyvinyl alcohol(PVA)/acrylamide based interpenetrating network(IPN)hydrogel that was surface modified with polydopamine(PDA)and termed Dopa-gel.The Dopa-gel exhibited mechanical properties similar to native skin tissue and a superior ability to modulate paracrine functions.Furthermore,a tough scaffold with tensile resistance was fabricated using this hydrogel by three-dimensional printing.The results showed that the interpenetration of PVA,alginate,and polyacrylamide networks notably enhanced the mechanical properties of the hydrogel.Surface modification with PDA endowed the hydrogels with increased secretion of immunomodulatory and proangiogenic factors.In an in vivo model,Dopa-gel treatment accelerated wound closure,increased vascularization,and promoted a shift in macrophages from a proinflammatory M1 phenotype to a prohealing and anti-inflammatory M2 phenotype within the wound area.Mechanistically,the focal adhesion kinase(FAK)/extracellular signal-related kinase(ERK)signaling pathway may mediate the promotion of skin defect healing by increasing paracrine secretion via the Dopa-gel.Additionally,proangiogenic factors can be induced through Rho-associated kinase-2(ROCK-2)/vascular endothelial growth factor(VEGF)-mediated paracrine secretion under tensile stress conditions.Taken together,these findings suggest that the multifunctional Dopa-gel,which has good mechanical properties similar to those of native skin tissue and enhanced immunomodulatory and angiogenic properties,is a promising scaffold for skin tissue regeneration.展开更多
The skeleton is a dynamic organ that is constantly remodeled. Proteins secreted from bone cells, namely osteoblasts, osteocytes,and osteoclasts exert regulation on osteoblastogenesis, osteclastogenesis, and angiogenes...The skeleton is a dynamic organ that is constantly remodeled. Proteins secreted from bone cells, namely osteoblasts, osteocytes,and osteoclasts exert regulation on osteoblastogenesis, osteclastogenesis, and angiogenesis in a paracrine manner. Osteoblasts secrete a range of different molecules including RANKL/OPG, M-CSF, SEMA3A, WNT5A, and WNT16 that regulate osteoclastogenesis. Osteoblasts also produce VEGFA that stimulates osteoblastogenesis and angiogenesis. Osteocytes produce sclerostin(SOST) that inhibits osteoblast differentiation and promotes osteoclast differentiation. Osteoclasts secrete factors including BMP6, CTHRC1, EFNB2, S1P, WNT10B, SEMA4D, and CT-1 that act on osteoblasts and osteocytes, and thereby influencea A osteogenesis. Osteoclast precursors produce the angiogenic factor PDGF-BB to promote the formation of Type H vessels, which then stimulate osteoblastogenesis. Besides, the evidences over the past decades show that at least three hormones or "osteokines"from bone cells have endocrine functions. FGF23 is produced by osteoblasts and osteocytes and can regulate phosphate metabolism. Osteocalcin(OCN) secreted by osteoblasts regulates systemic glucose and energy metabolism, reproduction, and cognition. Lipocalin-2(LCN2) is secreted by osteoblasts and can influence energy metabolism by suppressing appetite in the brain.We review the recent progresses in the paracrine and endocrine functions of the secretory proteins of osteoblasts, osteocytes, and osteoclasts, revealing connections of the skeleton with other tissues and providing added insights into the pathogenesis of degenerative diseases affecting multiple organs and the drug discovery process.展开更多
Adipose-derived stem cells have been shown to promote peripheral nerve regeneration through the paracrine secretion of neurotrophic factors. However, it is unclear whether these cells can promote myogenic differentiat...Adipose-derived stem cells have been shown to promote peripheral nerve regeneration through the paracrine secretion of neurotrophic factors. However, it is unclear whether these cells can promote myogenic differentiation in muscular dystrophy. Adipose-derived stem cells (6 × 106) were injected into the gastrocnemius muscle of mdx mice at various sites. Dystrophin expression was found in the muscle fibers. Phosphorylation levels of Akt, mammalian target of rapamycin (mTOR), eIF-4E binding protein 1 and $6 kinase 1 were increased, and the Akt/mTOR pathway was activated. Simultaneously, myogenin levels were increased, whereas cleaved caspase 3 and vimentin levels were decreased. Necrosis and fibrosis were reduced in the muscle fibers. These findings suggest that adipose-derived stem cells promote the re- generation and survival of muscle cells by inhibiting apoptosis and fibrosis, thereby alleviating muscle damage in muscular dystrophy.展开更多
Retinal degenerations are the leading causes of irreversible visual loss worldwide. Many pathologies included under this umbrella involve progressive degeneration and ultimate loss of the photoreceptor cells, with age...Retinal degenerations are the leading causes of irreversible visual loss worldwide. Many pathologies included under this umbrella involve progressive degeneration and ultimate loss of the photoreceptor cells, with age-related macular degeneration and inherited and ischemic retinal diseases the most relevant. These diseases greatly impact patients' daily lives, with accompanying marked social and economic consequences. However, the currently available treatments only delay the onset or slow progression of visual impairment, and there are no cures for these photoreceptor diseases. Therefore, new therapeutic strategies are being investigated, such as gene therapy, optogenetics, cell replacement, or cell-based neuroprotection. Specifically, stem cells can secrete neurotrophic, immunomodulatory, and anti-angiogenic factors that potentially protect and preserve retinal cells from neurodegeneration. Further, neuroprotection can be used in different types of retinal degenerative diseases and at different disease stages, unlike other potential therapies. This review summarizes stem cell-based paracrine neuroprotective strategies for photoreceptor degeneration, which are under study in clinical trials, and the latest preclinical studies. Effective retinal neuroprotection could be the next frontier in photoreceptor diseases, and the development of novel neuroprotective strategies will address the unmet therapeutic needs.展开更多
White adipose tissue(WAT) stores energy and also plays an important endocrine role in producing adipokines for communication with the peripheral and central nervous system. WAT consists of the major lipogenic unilocul...White adipose tissue(WAT) stores energy and also plays an important endocrine role in producing adipokines for communication with the peripheral and central nervous system. WAT consists of the major lipogenic unilocular adipocytes and the minor populations of beige and brite multilocular adipocytes. These multilocular adipocytes express thermogenic genes and have phenotypic similarity with thermogenic brown adipose tissue. According to a current paradigm, multilocular adipocytes have a thermogenic function in WAT. In this mini review, we discuss data revealing heterogeneity among multilocular cell subsets in WAT and their functions beyond thermogenesis. We propose a hypothetical neuroendocrine role for multilocular adipocytes subsets in the formation of adaptive sensory-sympathetic circuits between the central nervous system and adipose tissue, which activate lipolysis and thermogenesis in WAT in high energy demand situations.展开更多
Several factors could contribute to proliferation of multiple myeloma (MM) cells independent of interleukin-6 (IL6) in the later stages of the disease. Our previous studies established a dexamethasone-resistant 7TD1 c...Several factors could contribute to proliferation of multiple myeloma (MM) cells independent of interleukin-6 (IL6) in the later stages of the disease. Our previous studies established a dexamethasone-resistant 7TD1 cell line (7TD1-Dxm) and have shown that one mechanism of resistance to dexamethasone is due to inhibition of cytochrome c release. We have also observed that 7TD1-Dxm cells proliferate independently of externally-added IL6. This study therefore aimed to elucidate the mechanisms responsible for IL6-independent proliferation in 7TD1-Dxm cells. Our results indicated that 7TD1-Dxm cells produced IL6 in an autocrine fashion. We have observed that dexamethasone-resistant 7TD1 cells become dexamethasone-resistant and IL6-independent for proliferation concomitantly. This strongly suggests that production of IL6 by 7TD1-Dxm cells may play an important role in the development of dexamethasone resistance. Consequently, further investigation of the molecular mechanisms responsible for IL6 production may be helpful in delineating the mechanisms leading to dexamethasone resistance.展开更多
The progressive loss of dopaminergic neurons in the ventral mesencephalon is the main pathological hallmark of Parkinson’s disease(PD).Drugs currently available only alleviate the principal symptomatic motor-relate...The progressive loss of dopaminergic neurons in the ventral mesencephalon is the main pathological hallmark of Parkinson’s disease(PD).Drugs currently available only alleviate the principal symptomatic motor-related disturbances and their benefit is counteracted by side effects in the long time.展开更多
Objective To evaluate the effects of transforming growth factor β1 (TGF β1) autocrine blockage on proliferation activity and drug sensitivity of osteosarcoma. Methods Northern blot, MTT determination, and 3H thymidi...Objective To evaluate the effects of transforming growth factor β1 (TGF β1) autocrine blockage on proliferation activity and drug sensitivity of osteosarcoma. Methods Northern blot, MTT determination, and 3H thymidine incorporation were used to investigate the effects of antisense TGF β1 gene on osteosarcoma. Results The proliferation of osteosarcoma cells transfected by antisense TGF β1 gene was suppressed markedly, and adriamycin sensitivity was significantly increased. Conclusion Blockage of osteosarcoma cells TGF β1 autocrine loop inhibits cell proliferation and enhances chemother-apy sensitivity.展开更多
The receptor for autocrine motility factor (AMFR) is known to be involved in the process of AMF-mediated cell migration and metastasis. This paper describes the procedures of non-radioactive in situ hybridization (ISH...The receptor for autocrine motility factor (AMFR) is known to be involved in the process of AMF-mediated cell migration and metastasis. This paper describes the procedures of non-radioactive in situ hybridization (ISH) detection of AMFR mRNA in both paraffin-embedded surgical sections and cultured cells using either biotinylated oligonucleotide probes or digoxigenin-labeled RNA probes. The results showed that the AMFR mRNA was expressed at an enhanced level in hyperplaJstic and malignant tissues of breast and prostate cancer patient surgical specimens, indicating that the elevated AMFR expression was associated with the tissue malignancy Moreover, AMFR mRNA was detected in both normal and earcinoma cells when cultured at a subconfluent density. However, AMFR expression was inhibited in confluent normal (3T3-A31 murine fibroblast and FHs738BL human bladder) cells while it continued to express in carcinoma (J82 human bladder)and metastatic (3T3-M murine fibroblast) cells irrespective of cell density This suggested a cell-cell contact downregulation of AMFR mRNA expression in normal but not in cancer cells. The ISH data obtained in this study are closely consistent with the AMFR protein expression pattern previously reported, implying that the differential expression of AMFR gene may be regulated and controlled at the transcriptional level.展开更多
Differentiated embryonic stem cells (ESC) can ameliorate lung inflammation and fibrosis in animal lung injury models;therefore, ESC, or their products, could be candidates for regenerative therapy for incurable lung d...Differentiated embryonic stem cells (ESC) can ameliorate lung inflammation and fibrosis in animal lung injury models;therefore, ESC, or their products, could be candidates for regenerative therapy for incurable lung diseases, such as idiopathic pulmonary fibrosis (IPF). In this study, we have investigated the paracrine effect of differentiated and undifferentiated human ESC on alveolar epithelial cell (AEC) wound repair. hESC line, SHEF-2 cells were differentiated with Activin treatment for 22 days in an embryoid body (EB) suspension culture. Conditioned media (CM) which contain cell secretory factors were collected at different time points of differentiation. CM were then tested onin vitro?wound repair model with human type II AEC line, A549 cells (AEC). Our study demonstrated that CM originated from undifferentiated hESC significantly inhibited AEC wound repair when compared to the control. Whereas, CM originated from Activin-directed hESC differentiated cell population demonstrated a differential reparative effect on AEC wound repair model. CM obtained from Day-11 of differentiation significantly enhanced AEC wound repair in comparison to CM collected from pre- and post-Day-11 of differentiation. Day-11 CM enhanced AEC wound repair through significant stimulation of cell migration and cell proliferation. RT-PCR and immunocytochemistry confirmed that Day-11 CM was originated form a mixed population of endodermal/mesodermal differentiated hESC. This report suggests a putative paracrine-mediated epithelial injury healing mechanism by hESC secreted products, which is valuable in the development of novel stem cell-based therapeutic strategies.展开更多
The leukemia-associated autoinhibitor (LAI-615) derived from murine leukemia L7811 has been investigated intensively in our laboratory. In the following experiments, the partial purification of LA I-615 has been carri...The leukemia-associated autoinhibitor (LAI-615) derived from murine leukemia L7811 has been investigated intensively in our laboratory. In the following experiments, the partial purification of LA I-615 has been carried out in addition to the observation of phenotype variations of L7811 leuke-mic cells. The factor was purified over 1306-fold by sequential fractionation with Sephadex G-150 gel filtration, DEAE-cellulose ion exchange chromato-graphy, and Mono Q-fast protein liquid chromato-graphy. The molecular weight of LAI-615 was 68,000 as estimated by gel filtration. LAI-615 was a protein but not glycosylated, and it was suggested LAI-615 be secreted in an autocrine manner. Im-munocytochemical staining showed that the expression of Lyt2 phenotype of L7811 leukemic cells was often coincident with the secretion of LAI-615. Moreover, the physicochemical characteristics of LAI-615 was similar to that of T suppressor factor. Thus it is concluded that LAI-615 may be one of TsF-like factors.展开更多
Mesenchymal stem cells(MSCs),the most well-studied cell type in the field of stem cell therapy,have multi-lineage differentiation and self-renewal potential.MsC-based thera-pies have been used to treat diverse disease...Mesenchymal stem cells(MSCs),the most well-studied cell type in the field of stem cell therapy,have multi-lineage differentiation and self-renewal potential.MsC-based thera-pies have been used to treat diverse diseases because of their ability to potently repair tissue and locally restore function.An increasing body of evidence demonstrates that paracrine func-tion is central to the effects of MsC-based therapy.Growth factors,cytokines,chemokines,extracellular matrix components,and extracellular vehicles all contribute to the beneficial ef-fects of MSCs on tissue regeneration and repair.The paracrine substances secreted by MSCs change depending on the tissue microenvironment and biological behavior.In this review,we discuss the bioactive substances secreted by MsCs depending on the microenvironment and biological behavior and their regulatory mechanisms,which explain their potential to treat human diseases,to provide new ideas for further research and clinical cell-free therapy.展开更多
文摘Spermatogenesis is a complex process regulated by endocrine and testicular paracrine/autocrine factors. Gonadotropins are involved in the regulation of several testicular paracrine factors, mainly of the IL-1 family and testicular hormones. Testicular cytokines and growth factors (such as IL-1, IL-6, TNF, IFN-γ, LIF and SCF) were shown to affect both the germ cell proliferation and the Leydig and Sertoli cells functions and secretion. Cytokines and growth factors are produced by immune cells and in the interstitial and seminiferous tubular compartments by various testicular cells, including Sertoli, Leydig, peritubular cells, spermatogonia, differentiated spermatogonia and even spermatozoa. Corresponding cytokine and growth factor receptors were demonstrated on some of the testicular cells. These cytokines also control the secretion of the gonadotropins and testosterone in the testis. Under pathological conditions the levels of pro-inflammatory cytokines are increased and negatively affected spermatogenesis. Thus, the expression levels and the mechanisms involved in the regulation of testicular paracrine/autocrine factors should be considered in future therapeutic strategies for male infertility.
基金Supported by Natural Science Foundation of China No.39970290
文摘AIM: To explore the role of SF/HGF-Met autocrine and paracrine in metastasis of hepatocellular carcinoma (HCC). METHODS: SF/HGF and c-met transcription and protein expression in HCC were examined by RT-PCR and Western Blot in 4 HCC cell lines, including HepG2, Hep3B, SMMC7721 and MHCC-1, the last cell line had a higher potential of metastasis. sf/hgf cDNA was transfected by the method of Lipofectin into SMMC7721. SF/HGF and c-met antibody were used to stimulate and block SF/HGF-c-met signal transduction. Cell morphology, mobility, and proliferation were respectively compared by microscopic observation, wound healing assay and cell growth curve. RESULTS: HCC malignancy appeared to be relative to its met-SF/HGF expression. In MHCC-1, c-met expression was much stronger than that in other cell lines with lower potential of metastasis and only SF/HGF autocrine existed in MHCC-1. After sf/hgf cDNA transfection or conditioned medium of MHCC-1 stimulation, SMMC7721 changed into elongated morphology, and the abilities of proliferation (P 【 0.05) and mobility increased. Such bio-activity could be blocked by c-met antibody (P 【 0.05). CONCLUSION: The system of SF/HGF-c-met autocrine and paracrine played an important role in development and metastasis potential of HCC. Inhibition of SF/HGF-c-met signal transduction system may reduce the growth and metastasis of HCC.
文摘This is first report about the simultaneous over-expression of both Insulin-like growth factor (IGF- I ) and its receptor (IGF- I R) at mRNA level in human primary hepatic Cancer (PHC). In 10 PHC samples from China, IGF-I and IGF- I R were both over-expressed, whereas only a background signal was detected in normal liver. In 5 pairs of PHC and its non- tumorous adjacent liver tissues from South Africa, IGF- I and IGF- I R were also over-expressed in PHC. mRNA expression of IGF- I in all 5 cases and IGF- I R in 4 of 5 cases were higher in cancer than non- tumorous adjacent liver tissues. These results strongly implicate that an autocrine and/ or paracrine mechanism might be Involved in formation and progression of PHC.
基金supported by the National Natural Science Foundation of China(32271413 and 32271408)the National Basic Research Program of China(2021YFA1201404)+2 种基金the Natural Science Foundation of Jiangsu Province(BK20232023)the Science Program of Jiangsu Province Administration for Market Regulation(KJ2024010)the Jiangsu Provincial Key Medical Center Foundation,and the Jiangsu Provincial Medical Outstanding Talent Foundation.
文摘Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and natural skin are substantially different.Here,we developed a polyvinyl alcohol(PVA)/acrylamide based interpenetrating network(IPN)hydrogel that was surface modified with polydopamine(PDA)and termed Dopa-gel.The Dopa-gel exhibited mechanical properties similar to native skin tissue and a superior ability to modulate paracrine functions.Furthermore,a tough scaffold with tensile resistance was fabricated using this hydrogel by three-dimensional printing.The results showed that the interpenetration of PVA,alginate,and polyacrylamide networks notably enhanced the mechanical properties of the hydrogel.Surface modification with PDA endowed the hydrogels with increased secretion of immunomodulatory and proangiogenic factors.In an in vivo model,Dopa-gel treatment accelerated wound closure,increased vascularization,and promoted a shift in macrophages from a proinflammatory M1 phenotype to a prohealing and anti-inflammatory M2 phenotype within the wound area.Mechanistically,the focal adhesion kinase(FAK)/extracellular signal-related kinase(ERK)signaling pathway may mediate the promotion of skin defect healing by increasing paracrine secretion via the Dopa-gel.Additionally,proangiogenic factors can be induced through Rho-associated kinase-2(ROCK-2)/vascular endothelial growth factor(VEGF)-mediated paracrine secretion under tensile stress conditions.Taken together,these findings suggest that the multifunctional Dopa-gel,which has good mechanical properties similar to those of native skin tissue and enhanced immunomodulatory and angiogenic properties,is a promising scaffold for skin tissue regeneration.
基金supported in part by grants from 973 Program from the Chinese Ministry of Science and Technology (MOST) (2014CB964704 and 2015CB964503)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB19000000)the National Natural Science Foundation of China (NSFC) (31371463, 81672119, and 81725010)
文摘The skeleton is a dynamic organ that is constantly remodeled. Proteins secreted from bone cells, namely osteoblasts, osteocytes,and osteoclasts exert regulation on osteoblastogenesis, osteclastogenesis, and angiogenesis in a paracrine manner. Osteoblasts secrete a range of different molecules including RANKL/OPG, M-CSF, SEMA3A, WNT5A, and WNT16 that regulate osteoclastogenesis. Osteoblasts also produce VEGFA that stimulates osteoblastogenesis and angiogenesis. Osteocytes produce sclerostin(SOST) that inhibits osteoblast differentiation and promotes osteoclast differentiation. Osteoclasts secrete factors including BMP6, CTHRC1, EFNB2, S1P, WNT10B, SEMA4D, and CT-1 that act on osteoblasts and osteocytes, and thereby influencea A osteogenesis. Osteoclast precursors produce the angiogenic factor PDGF-BB to promote the formation of Type H vessels, which then stimulate osteoblastogenesis. Besides, the evidences over the past decades show that at least three hormones or "osteokines"from bone cells have endocrine functions. FGF23 is produced by osteoblasts and osteocytes and can regulate phosphate metabolism. Osteocalcin(OCN) secreted by osteoblasts regulates systemic glucose and energy metabolism, reproduction, and cognition. Lipocalin-2(LCN2) is secreted by osteoblasts and can influence energy metabolism by suppressing appetite in the brain.We review the recent progresses in the paracrine and endocrine functions of the secretory proteins of osteoblasts, osteocytes, and osteoclasts, revealing connections of the skeleton with other tissues and providing added insights into the pathogenesis of degenerative diseases affecting multiple organs and the drug discovery process.
基金supported by the National Natural Science Foundation of China,No.30370510,30870851,81271401the Joint Fund of National Natural Science Foundation of ChinaNatural Science Foundation of Guangdong Province of China,No.U1032004
文摘Adipose-derived stem cells have been shown to promote peripheral nerve regeneration through the paracrine secretion of neurotrophic factors. However, it is unclear whether these cells can promote myogenic differentiation in muscular dystrophy. Adipose-derived stem cells (6 × 106) were injected into the gastrocnemius muscle of mdx mice at various sites. Dystrophin expression was found in the muscle fibers. Phosphorylation levels of Akt, mammalian target of rapamycin (mTOR), eIF-4E binding protein 1 and $6 kinase 1 were increased, and the Akt/mTOR pathway was activated. Simultaneously, myogenin levels were increased, whereas cleaved caspase 3 and vimentin levels were decreased. Necrosis and fibrosis were reduced in the muscle fibers. These findings suggest that adipose-derived stem cells promote the re- generation and survival of muscle cells by inhibiting apoptosis and fibrosis, thereby alleviating muscle damage in muscular dystrophy.
基金supported by Fundación Carolina,Madrid,SpainFondo Europeo de Desarrollo Regional,Fondo Social Europeo and Consejería de Educación(Grant VA077P17),Junta de Castilla y León,SpainCentro en Red de Medicina Regenerativa y Terapia Celular,Junta de Castilla y León,Spain,respectively
文摘Retinal degenerations are the leading causes of irreversible visual loss worldwide. Many pathologies included under this umbrella involve progressive degeneration and ultimate loss of the photoreceptor cells, with age-related macular degeneration and inherited and ischemic retinal diseases the most relevant. These diseases greatly impact patients' daily lives, with accompanying marked social and economic consequences. However, the currently available treatments only delay the onset or slow progression of visual impairment, and there are no cures for these photoreceptor diseases. Therefore, new therapeutic strategies are being investigated, such as gene therapy, optogenetics, cell replacement, or cell-based neuroprotection. Specifically, stem cells can secrete neurotrophic, immunomodulatory, and anti-angiogenic factors that potentially protect and preserve retinal cells from neurodegeneration. Further, neuroprotection can be used in different types of retinal degenerative diseases and at different disease stages, unlike other potential therapies. This review summarizes stem cell-based paracrine neuroprotective strategies for photoreceptor degeneration, which are under study in clinical trials, and the latest preclinical studies. Effective retinal neuroprotection could be the next frontier in photoreceptor diseases, and the development of novel neuroprotective strategies will address the unmet therapeutic needs.
基金supported by NIH grants R21OD017244(to OZ)the National Center for Research Resources UL1RR025755(to OZ and AL)+5 种基金UL1TR001070(to OZ and AL)NCIP30CA16058(OSUCCC)(to OZ and AL)the NIH Roadmap for Medical Research(to OZ and AL)supported by the SEED Grant from College of Education and Human EcologyAccelerator Grant from Office for Technology and CommercializationBrain Injury program from the Ohio State University(to OZ and AL)
文摘White adipose tissue(WAT) stores energy and also plays an important endocrine role in producing adipokines for communication with the peripheral and central nervous system. WAT consists of the major lipogenic unilocular adipocytes and the minor populations of beige and brite multilocular adipocytes. These multilocular adipocytes express thermogenic genes and have phenotypic similarity with thermogenic brown adipose tissue. According to a current paradigm, multilocular adipocytes have a thermogenic function in WAT. In this mini review, we discuss data revealing heterogeneity among multilocular cell subsets in WAT and their functions beyond thermogenesis. We propose a hypothetical neuroendocrine role for multilocular adipocytes subsets in the formation of adaptive sensory-sympathetic circuits between the central nervous system and adipose tissue, which activate lipolysis and thermogenesis in WAT in high energy demand situations.
文摘Several factors could contribute to proliferation of multiple myeloma (MM) cells independent of interleukin-6 (IL6) in the later stages of the disease. Our previous studies established a dexamethasone-resistant 7TD1 cell line (7TD1-Dxm) and have shown that one mechanism of resistance to dexamethasone is due to inhibition of cytochrome c release. We have also observed that 7TD1-Dxm cells proliferate independently of externally-added IL6. This study therefore aimed to elucidate the mechanisms responsible for IL6-independent proliferation in 7TD1-Dxm cells. Our results indicated that 7TD1-Dxm cells produced IL6 in an autocrine fashion. We have observed that dexamethasone-resistant 7TD1 cells become dexamethasone-resistant and IL6-independent for proliferation concomitantly. This strongly suggests that production of IL6 by 7TD1-Dxm cells may play an important role in the development of dexamethasone resistance. Consequently, further investigation of the molecular mechanisms responsible for IL6 production may be helpful in delineating the mechanisms leading to dexamethasone resistance.
基金supported by the HANELA Foundation and the Swiss National Science Foundation,No.31003A_135565 and 406340_128124
文摘The progressive loss of dopaminergic neurons in the ventral mesencephalon is the main pathological hallmark of Parkinson’s disease(PD).Drugs currently available only alleviate the principal symptomatic motor-related disturbances and their benefit is counteracted by side effects in the long time.
基金Supported by Wuhan Chenguang Project (20025001028)
文摘Objective To evaluate the effects of transforming growth factor β1 (TGF β1) autocrine blockage on proliferation activity and drug sensitivity of osteosarcoma. Methods Northern blot, MTT determination, and 3H thymidine incorporation were used to investigate the effects of antisense TGF β1 gene on osteosarcoma. Results The proliferation of osteosarcoma cells transfected by antisense TGF β1 gene was suppressed markedly, and adriamycin sensitivity was significantly increased. Conclusion Blockage of osteosarcoma cells TGF β1 autocrine loop inhibits cell proliferation and enhances chemother-apy sensitivity.
文摘The receptor for autocrine motility factor (AMFR) is known to be involved in the process of AMF-mediated cell migration and metastasis. This paper describes the procedures of non-radioactive in situ hybridization (ISH) detection of AMFR mRNA in both paraffin-embedded surgical sections and cultured cells using either biotinylated oligonucleotide probes or digoxigenin-labeled RNA probes. The results showed that the AMFR mRNA was expressed at an enhanced level in hyperplaJstic and malignant tissues of breast and prostate cancer patient surgical specimens, indicating that the elevated AMFR expression was associated with the tissue malignancy Moreover, AMFR mRNA was detected in both normal and earcinoma cells when cultured at a subconfluent density. However, AMFR expression was inhibited in confluent normal (3T3-A31 murine fibroblast and FHs738BL human bladder) cells while it continued to express in carcinoma (J82 human bladder)and metastatic (3T3-M murine fibroblast) cells irrespective of cell density This suggested a cell-cell contact downregulation of AMFR mRNA expression in normal but not in cancer cells. The ISH data obtained in this study are closely consistent with the AMFR protein expression pattern previously reported, implying that the differential expression of AMFR gene may be regulated and controlled at the transcriptional level.
文摘Differentiated embryonic stem cells (ESC) can ameliorate lung inflammation and fibrosis in animal lung injury models;therefore, ESC, or their products, could be candidates for regenerative therapy for incurable lung diseases, such as idiopathic pulmonary fibrosis (IPF). In this study, we have investigated the paracrine effect of differentiated and undifferentiated human ESC on alveolar epithelial cell (AEC) wound repair. hESC line, SHEF-2 cells were differentiated with Activin treatment for 22 days in an embryoid body (EB) suspension culture. Conditioned media (CM) which contain cell secretory factors were collected at different time points of differentiation. CM were then tested onin vitro?wound repair model with human type II AEC line, A549 cells (AEC). Our study demonstrated that CM originated from undifferentiated hESC significantly inhibited AEC wound repair when compared to the control. Whereas, CM originated from Activin-directed hESC differentiated cell population demonstrated a differential reparative effect on AEC wound repair model. CM obtained from Day-11 of differentiation significantly enhanced AEC wound repair in comparison to CM collected from pre- and post-Day-11 of differentiation. Day-11 CM enhanced AEC wound repair through significant stimulation of cell migration and cell proliferation. RT-PCR and immunocytochemistry confirmed that Day-11 CM was originated form a mixed population of endodermal/mesodermal differentiated hESC. This report suggests a putative paracrine-mediated epithelial injury healing mechanism by hESC secreted products, which is valuable in the development of novel stem cell-based therapeutic strategies.
文摘The leukemia-associated autoinhibitor (LAI-615) derived from murine leukemia L7811 has been investigated intensively in our laboratory. In the following experiments, the partial purification of LA I-615 has been carried out in addition to the observation of phenotype variations of L7811 leuke-mic cells. The factor was purified over 1306-fold by sequential fractionation with Sephadex G-150 gel filtration, DEAE-cellulose ion exchange chromato-graphy, and Mono Q-fast protein liquid chromato-graphy. The molecular weight of LAI-615 was 68,000 as estimated by gel filtration. LAI-615 was a protein but not glycosylated, and it was suggested LAI-615 be secreted in an autocrine manner. Im-munocytochemical staining showed that the expression of Lyt2 phenotype of L7811 leukemic cells was often coincident with the secretion of LAI-615. Moreover, the physicochemical characteristics of LAI-615 was similar to that of T suppressor factor. Thus it is concluded that LAI-615 may be one of TsF-like factors.
基金supported by the Natural Science Foundation of Guangdong Province of China(No.2021A1515011623)the Administrator Foundation of Nanfang Hospital(China)(No.2019B021,2020z004)the National Nature Science Foundation of China(No.81971852).
文摘Mesenchymal stem cells(MSCs),the most well-studied cell type in the field of stem cell therapy,have multi-lineage differentiation and self-renewal potential.MsC-based thera-pies have been used to treat diverse diseases because of their ability to potently repair tissue and locally restore function.An increasing body of evidence demonstrates that paracrine func-tion is central to the effects of MsC-based therapy.Growth factors,cytokines,chemokines,extracellular matrix components,and extracellular vehicles all contribute to the beneficial ef-fects of MSCs on tissue regeneration and repair.The paracrine substances secreted by MSCs change depending on the tissue microenvironment and biological behavior.In this review,we discuss the bioactive substances secreted by MsCs depending on the microenvironment and biological behavior and their regulatory mechanisms,which explain their potential to treat human diseases,to provide new ideas for further research and clinical cell-free therapy.