With the rapid development of the Internet,network security and data privacy are increasingly valued.Although classical Network Intrusion Detection System(NIDS)based on Deep Learning(DL)models can provide good detecti...With the rapid development of the Internet,network security and data privacy are increasingly valued.Although classical Network Intrusion Detection System(NIDS)based on Deep Learning(DL)models can provide good detection accuracy,but collecting samples for centralized training brings the huge risk of data privacy leakage.Furthermore,the training of supervised deep learning models requires a large number of labeled samples,which is usually cumbersome.The“black-box”problem also makes the DL models of NIDS untrustworthy.In this paper,we propose a trusted Federated Learning(FL)Traffic IDS method called FL-TIDS to address the above-mentioned problems.In FL-TIDS,we design an unsupervised intrusion detection model based on autoencoders that alleviates the reliance on marked samples.At the same time,we use FL for model training to protect data privacy.In addition,we design an improved SHAP interpretable method based on chi-square test to perform interpretable analysis of the trained model.We conducted several experiments to evaluate the proposed FL-TIDS.We first determine experimentally the structure and the number of neurons of the unsupervised AE model.Secondly,we evaluated the proposed method using the UNSW-NB15 and CICIDS2017 datasets.The exper-imental results show that the unsupervised AE model has better performance than the other 7 intrusion detection models in terms of precision,recall and f1-score.Then,federated learning is used to train the intrusion detection model.The experimental results indicate that the model is more accurate than the local learning model.Finally,we use an improved SHAP explainability method based on Chi-square test to analyze the explainability.The analysis results show that the identification characteristics of the model are consistent with the attack characteristics,and the model is reliable.展开更多
This paper addresses the challenge of identifying abnormal states in Lithium-ion Battery(LiB)time series data.As the energy sector increasingly focuses on integrating distributed energy resources,Virtual Power Plants(...This paper addresses the challenge of identifying abnormal states in Lithium-ion Battery(LiB)time series data.As the energy sector increasingly focuses on integrating distributed energy resources,Virtual Power Plants(VPP)have become a vital new framework for energy management.LiBs are key in this context,owing to their high-efficiency energy storage capabilities essential for VPP operations.However,LiBs are prone to various abnormal states like overcharging,over-discharging,and internal short circuits,which impede power transmission efficiency.Traditional methods for detecting such abnormalities in LiB are too broad and lack precision for the dynamic and irregular nature of LiB data.In response,we introduce an innovative method:a Long Short-Term Memory(LSTM)autoencoder based on Dynamic Frequency Memory and Correlation Attention(DFMCA-LSTM-AE).This unsupervised,end-to-end approach is specifically designed for dynamically monitoring abnormal states in LiB data.The method starts with a Dynamic Frequency Fourier Transform module,which dynamically captures the frequency characteristics of time series data across three scales,incorporating a memory mechanism to reduce overgeneralization of abnormal frequencies.This is followed by integrating LSTM into both the encoder and decoder,enabling the model to effectively encode and decode the temporal relationships in the time series.Empirical tests on a real-world LiB dataset demonstrate that DFMCA-LSTM-AE outperforms existing models,achieving an average Area Under the Curve(AUC)of 90.73%and an F1 score of 83.83%.These results mark significant improvements over existing models,ranging from 2.4%–45.3%for AUC and 1.6%–28.9%for F1 score,showcasing the model’s enhanced accuracy and reliability in detecting abnormal states in LiB data.展开更多
Significant advancements have beenwitnessed in visual tracking applications leveragingViT in recent years,mainly due to the formidablemodeling capabilities of Vision Transformer(ViT).However,the strong performance of ...Significant advancements have beenwitnessed in visual tracking applications leveragingViT in recent years,mainly due to the formidablemodeling capabilities of Vision Transformer(ViT).However,the strong performance of such trackers heavily relies on ViT models pretrained for long periods,limitingmore flexible model designs for tracking tasks.To address this issue,we propose an efficient unsupervised ViT pretraining method for the tracking task based on masked autoencoders,called TrackMAE.During pretraining,we employ two shared-parameter ViTs,serving as the appearance encoder and motion encoder,respectively.The appearance encoder encodes randomly masked image data,while the motion encoder encodes randomly masked pairs of video frames.Subsequently,an appearance decoder and a motion decoder separately reconstruct the original image data and video frame data at the pixel level.In this way,ViT learns to understand both the appearance of images and the motion between video frames simultaneously.Experimental results demonstrate that ViT-Base and ViT-Large models,pretrained with TrackMAE and combined with a simple tracking head,achieve state-of-the-art(SOTA)performance without additional design.Moreover,compared to the currently popular MAE pretraining methods,TrackMAE consumes only 1/5 of the training time,which will facilitate the customization of diverse models for tracking.For instance,we additionally customize a lightweight ViT-XS,which achieves SOTA efficient tracking performance.展开更多
First,we propose a cross-domain authentication architecture based on trust evaluation mechanism,including registration,certificate issuance,and cross-domain authentication processes.A direct trust evaluation mechanism...First,we propose a cross-domain authentication architecture based on trust evaluation mechanism,including registration,certificate issuance,and cross-domain authentication processes.A direct trust evaluation mechanism based on the time decay factor is proposed,taking into account the influence of historical interaction records.We weight the time attenuation factor to each historical interaction record for updating and got the new historical record data.We refer to the beta distribution to enhance the flexibility and adaptability of the direct trust assessment model to better capture time trends in the historical record.Then we propose an autoencoder-based trust clustering algorithm.We perform feature extraction based on autoencoders.Kullback leibler(KL)divergence is used to calculate the reconstruction error.When constructing a convolutional autoencoder,we introduce convolutional neural networks to improve training efficiency and introduce sparse constraints into the hidden layer of the autoencoder.The sparse penalty term in the loss function measures the difference through the KL divergence.Trust clustering is performed based on the density based spatial clustering of applications with noise(DBSCAN)clustering algorithm.During the clustering process,edge nodes have a variety of trustworthy attribute characteristics.We assign different attribute weights according to the relative importance of each attribute in the clustering process,and a larger weight means that the attribute occupies a greater weight in the calculation of distance.Finally,we introduced adaptive weights to calculate comprehensive trust evaluation.Simulation experiments prove that our trust evaluation mechanism has excellent reliability and accuracy.展开更多
To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the accele...To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the acceleration signal of the bridge structure through data reconstruction.The extreme gradient boosting tree(XGBoost)was then used to perform analysis on the feature data to achieve damage detection with high accuracy and high performance.The proposed method was applied in a numerical simulation study on a three-span continuous girder and further validated experimentally on a scaled model of a cable-stayed bridge.The numerical simulation results show that the identification errors remain within 2.9%for six single-damage cases and within 3.1%for four double-damage cases.The experimental validation results demonstrate that when the tension in a single cable of the cable-stayed bridge decreases by 20%,the method accurately identifies damage at different cable locations using only sensors installed on the main girder,achieving identification accuracies above 95.8%in all cases.The proposed method shows high identification accuracy and generalization ability across various damage scenarios.展开更多
Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To ...Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To solve this problem,this paper proposes a fault detection method developed by a Generalized Autoencoder(GAE)for systems with performance degradation.The advantage of this method is that it can accurately detect faults when the traction system of high-speed trains is affected by performance degradation.Regardless of the probability distribution,it can handle any data,and the GAE has extremely high sensitivity in anomaly detection.Finally,the effectiveness of this method is verified through the Traction Drive Control System(TDCS)platform.At different performance degradation levels,our method’s experimental results are superior to traditional methods.展开更多
Contemporary attackers,mainly motivated by financial gain,consistently devise sophisticated penetration techniques to access important information or data.The growing use of Internet of Things(IoT)technology in the co...Contemporary attackers,mainly motivated by financial gain,consistently devise sophisticated penetration techniques to access important information or data.The growing use of Internet of Things(IoT)technology in the contemporary convergence environment to connect to corporate networks and cloud-based applications only worsens this situation,as it facilitates multiple new attack vectors to emerge effortlessly.As such,existing intrusion detection systems suffer from performance degradation mainly because of insufficient considerations and poorly modeled detection systems.To address this problem,we designed a blended threat detection approach,considering the possible impact and dimensionality of new attack surfaces due to the aforementioned convergence.We collectively refer to the convergence of different technology sectors as the internet of blended environment.The proposed approach encompasses an ensemble of heterogeneous probabilistic autoencoders that leverage the corresponding advantages of a convolutional variational autoencoder and long short-term memory variational autoencoder.An extensive experimental analysis conducted on the TON_IoT dataset demonstrated 96.02%detection accuracy.Furthermore,performance of the proposed approach was compared with various single model(autoencoder)-based network intrusion detection approaches:autoencoder,variational autoencoder,convolutional variational autoencoder,and long short-term memory variational autoencoder.The proposed model outperformed all compared models,demonstrating F1-score improvements of 4.99%,2.25%,1.92%,and 3.69%,respectively.展开更多
Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050.However,they are exceedingly unpredictable since they rely h...Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050.However,they are exceedingly unpredictable since they rely highly on weather and atmospheric conditions.In microgrids,smart energy management systems,such as integrated demand response programs,are permanently established on a step-ahead basis,which means that accu-rate forecasting of wind speed and solar irradiance intervals is becoming increasingly crucial to the optimal operation and planning of microgrids.With this in mind,a novel“bidirectional long short-term memory network”(Bi-LSTM)-based,deep stacked,sequence-to-sequence autoencoder(S2SAE)forecasting model for predicting short-term solar irradiation and wind speed was developed and evaluated in MATLAB.To create a deep stacked S2SAE prediction model,a deep Bi-LSTM-based encoder and decoder are stacked on top of one another to reduce the dimension of the input sequence,extract its features,and then reconstruct it to produce the forecasts.Hyperparameters of the proposed deep stacked S2SAE forecasting model were optimized using the Bayesian optimization algorithm.Moreover,the forecasting performance of the proposed Bi-LSTM-based deep stacked S2SAE model was compared to three other deep,and shallow stacked S2SAEs,i.e.,the LSTM-based deep stacked S2SAE model,gated recurrent unit-based deep stacked S2SAE model,and Bi-LSTM-based shallow stacked S2SAE model.All these models were also optimized and modeled in MATLAB.The results simulated based on actual data confirmed that the proposed model outperformed the alternatives by achieving an accuracy of up to 99.7%,which evidenced the high reliability of the proposed forecasting.展开更多
Objective and accurate evaluation of rock mass quality classification is the prerequisite for reliable sta-bility assessment.To develop a tool that can deliver quick and accurate evaluation of rock mass quality,a deep...Objective and accurate evaluation of rock mass quality classification is the prerequisite for reliable sta-bility assessment.To develop a tool that can deliver quick and accurate evaluation of rock mass quality,a deep learning approach is developed,which uses stacked autoencoders(SAEs)with several autoencoders and a softmax net layer.Ten rock parameters of rock mass rating(RMR)system are calibrated in this model.The model is trained using 75%of the total database for training sample data.The SAEs trained model achieves a nearly 100%prediction accuracy.For comparison,other different models are also trained with the same dataset,using artificial neural network(ANN)and radial basis function(RBF).The results show that the SAEs classify all test samples correctly while the rating accuracies of ANN and RBF are 97.5%and 98.7%,repectively,which are calculated from the confusion matrix.Moreover,this model is further employed to predict the slope risk level of an abandoned quarry.The proposed approach using SAEs,or deep learning in general,is more objective and more accurate and requires less human inter-vention.The findings presented here shall shed light for engineers/researchers interested in analyzing rock mass classification criteria or performing field investigation.展开更多
The Internet of things(IoT)is an emerging paradigm that integrates devices and services to collect real-time data from surroundings and process the information at a very high speed to make a decision.Despite several a...The Internet of things(IoT)is an emerging paradigm that integrates devices and services to collect real-time data from surroundings and process the information at a very high speed to make a decision.Despite several advantages,the resource-constrained and heterogeneous nature of IoT networks makes them a favorite target for cybercriminals.A single successful attempt of network intrusion can compromise the complete IoT network which can lead to unauthorized access to the valuable information of consumers and industries.To overcome the security challenges of IoT networks,this article proposes a lightweight deep autoencoder(DAE)based cyberattack detection framework.The proposed approach learns the normal and anomalous data patterns to identify the various types of network intrusions.The most significant feature of the proposed technique is its lower complexity which is attained by reducing the number of operations.To optimally train the proposed DAE,a range of hyperparameters was determined through extensive experiments that ensure higher attack detection accuracy.The efficacy of the suggested framework is evaluated via two standard and open-source datasets.The proposed DAE achieved the accuracies of 98.86%,and 98.26%for NSL-KDD,99.32%,and 98.79%for the UNSW-NB15 dataset in binary class and multi-class scenarios.The performance of the suggested attack detection framework is also compared with several state-of-the-art intrusion detection schemes.Experimental outcomes proved the promising performance of the proposed scheme for cyberattack detection in IoT networks.展开更多
The attacks on in-vehicle Controller Area Network(CAN)bus messages severely disrupt normal communication between vehicles.Therefore,researches on intrusion detection models for CAN have positive business value for veh...The attacks on in-vehicle Controller Area Network(CAN)bus messages severely disrupt normal communication between vehicles.Therefore,researches on intrusion detection models for CAN have positive business value for vehicle security,and the intrusion detection technology for CAN bus messages can effectively protect the invehicle network from unlawful attacks.Previous machine learning-based models are unable to effectively identify intrusive abnormal messages due to their inherent shortcomings.Hence,to address the shortcomings of the previous machine learning-based intrusion detection technique,we propose a novel method using Attention Mechanism and AutoEncoder for Intrusion Detection(AMAEID).The AMAEID model first converts the raw hexadecimal message data into binary format to obtain better input.Then the AMAEID model encodes and decodes the binary message data using a multi-layer denoising autoencoder model to obtain a hidden feature representation that can represent the potential features behind the message data at a deeper level.Finally,the AMAEID model uses the attention mechanism and the fully connected layer network to infer whether the message is an abnormal message or not.The experimental results with three evaluation metrics on a real in-vehicle CAN bus message dataset outperform some traditional machine learning algorithms,demonstrating the effectiveness of the AMAEID model.展开更多
Recently,the autoencoder(AE)based method plays a critical role in the hyperspectral anomaly detection domain.However,due to the strong generalised capacity of AE,the abnormal samples are usually reconstructed well alo...Recently,the autoencoder(AE)based method plays a critical role in the hyperspectral anomaly detection domain.However,due to the strong generalised capacity of AE,the abnormal samples are usually reconstructed well along with the normal background samples.Thus,in order to separate anomalies from the background by calculating reconstruction errors,it can be greatly beneficial to reduce the AE capability for abnormal sample reconstruction while maintaining the background reconstruction performance.A memory‐augmented autoencoder for hyperspectral anomaly detection(MAENet)is proposed to address this challenging problem.Specifically,the proposed MAENet mainly consists of an encoder,a memory module,and a decoder.First,the encoder transforms the original hyperspectral data into the low‐dimensional latent representation.Then,the latent representation is utilised to retrieve the most relevant matrix items in the memory matrix,and the retrieved matrix items will be used to replace the latent representation from the encoder.Finally,the decoder is used to reconstruct the input hyperspectral data using the retrieved memory items.With this strategy,the background can still be reconstructed well while the abnormal samples cannot.Experiments conducted on five real hyperspectral anomaly data sets demonstrate the superiority of the proposed method.展开更多
The widespread usage of Cyber Physical Systems(CPSs)generates a vast volume of time series data,and precisely determining anomalies in the data is critical for practical production.Autoencoder is the mainstream method...The widespread usage of Cyber Physical Systems(CPSs)generates a vast volume of time series data,and precisely determining anomalies in the data is critical for practical production.Autoencoder is the mainstream method for time series anomaly detection,and the anomaly is judged by reconstruction error.However,due to the strong generalization ability of neural networks,some abnormal samples close to normal samples may be judged as normal,which fails to detect the abnormality.In addition,the dataset rarely provides sufficient anomaly labels.This research proposes an unsupervised anomaly detection approach based on adversarial memory autoencoders for multivariate time series to solve the above problem.Firstly,an encoder encodes the input data into low-dimensional space to acquire a feature vector.Then,a memory module is used to learn the feature vector’s prototype patterns and update the feature vectors.The updating process allows partial forgetting of information to prevent model overgeneralization.After that,two decoders reconstruct the input data.Finally,this research uses the Peak Over Threshold(POT)method to calculate the threshold to determine anomalous samples from normal samples.This research uses a two-stage adversarial training strategy during model training to enlarge the gap between the reconstruction error of normal and abnormal samples.The proposed method achieves significant anomaly detection results on synthetic and real datasets from power systems,water treatment plants,and computer clusters.The F1 score reached an average of 0.9196 on the five datasets,which is 0.0769 higher than the best baseline method.展开更多
Railway turnout is one of the critical equipment of Switch&Crossing(S&C)Systems in railway,related to the train’s safety and operation efficiency.With the advancement of intelligent sensors,data-driven fault ...Railway turnout is one of the critical equipment of Switch&Crossing(S&C)Systems in railway,related to the train’s safety and operation efficiency.With the advancement of intelligent sensors,data-driven fault detection technology for railway turnout has become an important research topic.However,little research in the literature has investigated the capability of data-driven fault detection technology for metro railway turnout.This paper presents a convolutional autoencoder-based fault detection method for the metro railway turnout considering human field inspection scenarios.First,the one-dimensional original time-series signal is converted into a twodimensional image by data pre-processing and 2D representation.Next,a binary classification model based on the convolutional autoencoder is developed to implement fault detection.The profile and structure information can be captured by processing data as images.The performance of our method is evaluated and tested on real-world operational current data in themetro stations.Experimental results show that the proposedmethod achieves better performance,especially in terms of error rate and specificity,and is robust in practical engineering applications.展开更多
The recently developed machine learning(ML)models have the ability to obtain high detection rate using biomedical signals.Therefore,this article develops an Optimal Sparse Autoencoder based Sleep Stage Classification M...The recently developed machine learning(ML)models have the ability to obtain high detection rate using biomedical signals.Therefore,this article develops an Optimal Sparse Autoencoder based Sleep Stage Classification Model on Electroencephalography(EEG)Biomedical Signals,named OSAE-SSCEEG technique.The major intention of the OSAE-SSCEEG technique is tofind the sleep stage disorders using the EEG biomedical signals.The OSAE-SSCEEG technique primarily undergoes preprocessing using min-max data normalization approach.Moreover,the classification of sleep stages takes place using the Sparse Autoencoder with Smoothed Regularization(SAE-SR)with softmax(SM)approach.Finally,the parameter optimization of the SAE-SR technique is carried out by the use of Coyote Optimization Algorithm(COA)and it leads to boosted classification efficiency.In order to ensure the enhanced performance of the OSAE-SSCEEG technique,a wide ranging simulation analysis is performed and the obtained results demonstrate the betterment of the OSAE-SSCEEG tech-nique over the recent methods.展开更多
Recently,the importance of data analysis has increased significantly due to the rapid data increase.In particular,vehicle communication data,considered a significant challenge in Intelligent Transportation Systems(ITS...Recently,the importance of data analysis has increased significantly due to the rapid data increase.In particular,vehicle communication data,considered a significant challenge in Intelligent Transportation Systems(ITS),has spatiotemporal characteristics and many missing values.High missing values in data lead to the decreased predictive performance of models.Existing missing value imputation models ignore the topology of transportation net-works due to the structural connection of road networks,although physical distances are close in spatiotemporal image data.Additionally,the learning process of missing value imputation models requires complete data,but there are limitations in securing complete vehicle communication data.This study proposes a missing value imputation model based on adversarial autoencoder using spatiotemporal feature extraction to address these issues.The proposed method replaces missing values by reflecting spatiotemporal characteristics of transportation data using temporal convolution and spatial convolution.Experimental results show that the proposed model has the lowest error rate of 5.92%,demonstrating excellent predictive accuracy.Through this,it is possible to solve the data sparsity problem and improve traffic safety by showing superior predictive performance.展开更多
Deep learning(DL)has shown its superior performance in dealing with various computer vision tasks in recent years.As a simple and effective DL model,autoencoder(AE)is popularly used to decompose hyperspectral images(H...Deep learning(DL)has shown its superior performance in dealing with various computer vision tasks in recent years.As a simple and effective DL model,autoencoder(AE)is popularly used to decompose hyperspectral images(HSIs)due to its powerful ability of feature extraction and data reconstruction.However,most existing AE-based unmixing algorithms usually ignore the spatial information of HSIs.To solve this problem,a hypergraph regularized deep autoencoder(HGAE)is proposed for unmixing.Firstly,the traditional AE architecture is specifically improved as an unsupervised unmixing framework.Secondly,hypergraph learning is employed to reformulate the loss function,which facilitates the expression of high-order similarity among locally neighboring pixels and promotes the consistency of their abundances.Moreover,L_(1/2)norm is further used to enhance abundances sparsity.Finally,the experiments on simulated data,real hyperspectral remote sensing images,and textile cloth images are used to verify that the proposed method can perform better than several state-of-the-art unmixing algorithms.展开更多
Visual motion segmentation(VMS)is an important and key part of many intelligent crowd systems.It can be used to figure out the flow behavior through a crowd and to spot unusual life-threatening incidents like crowd st...Visual motion segmentation(VMS)is an important and key part of many intelligent crowd systems.It can be used to figure out the flow behavior through a crowd and to spot unusual life-threatening incidents like crowd stampedes and crashes,which pose a serious risk to public safety and have resulted in numerous fatalities over the past few decades.Trajectory clustering has become one of the most popular methods in VMS.However,complex data,such as a large number of samples and parameters,makes it difficult for trajectory clustering to work well with accurate motion segmentation results.This study introduces a spatial-angular stacked sparse autoencoder model(SA-SSAE)with l2-regularization and softmax,a powerful deep learning method for visual motion segmentation to cluster similar motion patterns that belong to the same cluster.The proposed model can extract meaningful high-level features using only spatial-angular features obtained from refined tracklets(a.k.a‘trajectories’).We adopt l2-regularization and sparsity regularization,which can learn sparse representations of features,to guarantee the sparsity of the autoencoders.We employ the softmax layer to map the data points into accurate cluster representations.One of the best advantages of the SA-SSAE framework is it can manage VMS even when individuals move around randomly.This framework helps cluster the motion patterns effectively with higher accuracy.We put forward a new dataset with itsmanual ground truth,including 21 crowd videos.Experiments conducted on two crowd benchmarks demonstrate that the proposed model can more accurately group trajectories than the traditional clustering approaches used in previous studies.The proposed SA-SSAE framework achieved a 0.11 improvement in accuracy and a 0.13 improvement in the F-measure compared with the best current method using the CUHK dataset.展开更多
In this paper, we introduce a novel scheme for the separate training of deep learning-based autoencoders used for Channel State Information (CSI) feedback. Our distinct training approach caters to multiple users and b...In this paper, we introduce a novel scheme for the separate training of deep learning-based autoencoders used for Channel State Information (CSI) feedback. Our distinct training approach caters to multiple users and base stations, enabling independent and individualized local training. This ensures the more secure processing of data and algorithms, different from the commonly adopted joint training method. To maintain comparable performance with joint training, we present two distinct training methods: separate training decoder and separate training encoder. It’s noteworthy that conducting separate training for the encoder can pose additional challenges, due to its responsibility in acquiring a compressed representation of underlying data features. This complexity makes accommodating multiple pre-trained decoders for just one encoder a demanding task. To overcome this, we design an adaptation layer architecture that effectively minimizes performance losses. Moreover, the flexible training strategy empowers users and base stations to seamlessly incorporate distinct encoder and decoder structures into the system, significantly amplifying the system’s scalability. .展开更多
基金supported by National Natural Science Fundation of China under Grant 61972208National Natural Science Fundation(General Program)of China under Grant 61972211+2 种基金National Key Research and Development Project of China under Grant 2020YFB1804700Future Network Innovation Research and Application Projects under Grant No.2021FNA020062021 Jiangsu Postgraduate Research Innovation Plan under Grant No.KYCX210794.
文摘With the rapid development of the Internet,network security and data privacy are increasingly valued.Although classical Network Intrusion Detection System(NIDS)based on Deep Learning(DL)models can provide good detection accuracy,but collecting samples for centralized training brings the huge risk of data privacy leakage.Furthermore,the training of supervised deep learning models requires a large number of labeled samples,which is usually cumbersome.The“black-box”problem also makes the DL models of NIDS untrustworthy.In this paper,we propose a trusted Federated Learning(FL)Traffic IDS method called FL-TIDS to address the above-mentioned problems.In FL-TIDS,we design an unsupervised intrusion detection model based on autoencoders that alleviates the reliance on marked samples.At the same time,we use FL for model training to protect data privacy.In addition,we design an improved SHAP interpretable method based on chi-square test to perform interpretable analysis of the trained model.We conducted several experiments to evaluate the proposed FL-TIDS.We first determine experimentally the structure and the number of neurons of the unsupervised AE model.Secondly,we evaluated the proposed method using the UNSW-NB15 and CICIDS2017 datasets.The exper-imental results show that the unsupervised AE model has better performance than the other 7 intrusion detection models in terms of precision,recall and f1-score.Then,federated learning is used to train the intrusion detection model.The experimental results indicate that the model is more accurate than the local learning model.Finally,we use an improved SHAP explainability method based on Chi-square test to analyze the explainability.The analysis results show that the identification characteristics of the model are consistent with the attack characteristics,and the model is reliable.
基金supported by“Regional Innovation Strategy(RIS)”through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-002)the Technology Development Program(RS-2023-00278623)funded by the Ministry of SMEs and Startups(MSS,Korea).
文摘This paper addresses the challenge of identifying abnormal states in Lithium-ion Battery(LiB)time series data.As the energy sector increasingly focuses on integrating distributed energy resources,Virtual Power Plants(VPP)have become a vital new framework for energy management.LiBs are key in this context,owing to their high-efficiency energy storage capabilities essential for VPP operations.However,LiBs are prone to various abnormal states like overcharging,over-discharging,and internal short circuits,which impede power transmission efficiency.Traditional methods for detecting such abnormalities in LiB are too broad and lack precision for the dynamic and irregular nature of LiB data.In response,we introduce an innovative method:a Long Short-Term Memory(LSTM)autoencoder based on Dynamic Frequency Memory and Correlation Attention(DFMCA-LSTM-AE).This unsupervised,end-to-end approach is specifically designed for dynamically monitoring abnormal states in LiB data.The method starts with a Dynamic Frequency Fourier Transform module,which dynamically captures the frequency characteristics of time series data across three scales,incorporating a memory mechanism to reduce overgeneralization of abnormal frequencies.This is followed by integrating LSTM into both the encoder and decoder,enabling the model to effectively encode and decode the temporal relationships in the time series.Empirical tests on a real-world LiB dataset demonstrate that DFMCA-LSTM-AE outperforms existing models,achieving an average Area Under the Curve(AUC)of 90.73%and an F1 score of 83.83%.These results mark significant improvements over existing models,ranging from 2.4%–45.3%for AUC and 1.6%–28.9%for F1 score,showcasing the model’s enhanced accuracy and reliability in detecting abnormal states in LiB data.
基金supported in part by National Natural Science Foundation of China(No.62176041)in part by Excellent Science and Technique Talent Foundation of Dalian(No.2022RY21).
文摘Significant advancements have beenwitnessed in visual tracking applications leveragingViT in recent years,mainly due to the formidablemodeling capabilities of Vision Transformer(ViT).However,the strong performance of such trackers heavily relies on ViT models pretrained for long periods,limitingmore flexible model designs for tracking tasks.To address this issue,we propose an efficient unsupervised ViT pretraining method for the tracking task based on masked autoencoders,called TrackMAE.During pretraining,we employ two shared-parameter ViTs,serving as the appearance encoder and motion encoder,respectively.The appearance encoder encodes randomly masked image data,while the motion encoder encodes randomly masked pairs of video frames.Subsequently,an appearance decoder and a motion decoder separately reconstruct the original image data and video frame data at the pixel level.In this way,ViT learns to understand both the appearance of images and the motion between video frames simultaneously.Experimental results demonstrate that ViT-Base and ViT-Large models,pretrained with TrackMAE and combined with a simple tracking head,achieve state-of-the-art(SOTA)performance without additional design.Moreover,compared to the currently popular MAE pretraining methods,TrackMAE consumes only 1/5 of the training time,which will facilitate the customization of diverse models for tracking.For instance,we additionally customize a lightweight ViT-XS,which achieves SOTA efficient tracking performance.
基金This work is supported by the 2022 National Key Research and Development Plan“Security Protection Technology for Critical Information Infrastructure of Distribution Network”(2022YFB3105100).
文摘First,we propose a cross-domain authentication architecture based on trust evaluation mechanism,including registration,certificate issuance,and cross-domain authentication processes.A direct trust evaluation mechanism based on the time decay factor is proposed,taking into account the influence of historical interaction records.We weight the time attenuation factor to each historical interaction record for updating and got the new historical record data.We refer to the beta distribution to enhance the flexibility and adaptability of the direct trust assessment model to better capture time trends in the historical record.Then we propose an autoencoder-based trust clustering algorithm.We perform feature extraction based on autoencoders.Kullback leibler(KL)divergence is used to calculate the reconstruction error.When constructing a convolutional autoencoder,we introduce convolutional neural networks to improve training efficiency and introduce sparse constraints into the hidden layer of the autoencoder.The sparse penalty term in the loss function measures the difference through the KL divergence.Trust clustering is performed based on the density based spatial clustering of applications with noise(DBSCAN)clustering algorithm.During the clustering process,edge nodes have a variety of trustworthy attribute characteristics.We assign different attribute weights according to the relative importance of each attribute in the clustering process,and a larger weight means that the attribute occupies a greater weight in the calculation of distance.Finally,we introduced adaptive weights to calculate comprehensive trust evaluation.Simulation experiments prove that our trust evaluation mechanism has excellent reliability and accuracy.
基金The National Natural Science Foundation of China(No.52361165658,52378318,52078459).
文摘To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the acceleration signal of the bridge structure through data reconstruction.The extreme gradient boosting tree(XGBoost)was then used to perform analysis on the feature data to achieve damage detection with high accuracy and high performance.The proposed method was applied in a numerical simulation study on a three-span continuous girder and further validated experimentally on a scaled model of a cable-stayed bridge.The numerical simulation results show that the identification errors remain within 2.9%for six single-damage cases and within 3.1%for four double-damage cases.The experimental validation results demonstrate that when the tension in a single cable of the cable-stayed bridge decreases by 20%,the method accurately identifies damage at different cable locations using only sensors installed on the main girder,achieving identification accuracies above 95.8%in all cases.The proposed method shows high identification accuracy and generalization ability across various damage scenarios.
基金supported by the National Natural Science Foundation of China(Grant Nos.U20A20186 and 62372063).
文摘Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To solve this problem,this paper proposes a fault detection method developed by a Generalized Autoencoder(GAE)for systems with performance degradation.The advantage of this method is that it can accurately detect faults when the traction system of high-speed trains is affected by performance degradation.Regardless of the probability distribution,it can handle any data,and the GAE has extremely high sensitivity in anomaly detection.Finally,the effectiveness of this method is verified through the Traction Drive Control System(TDCS)platform.At different performance degradation levels,our method’s experimental results are superior to traditional methods.
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.2021R1A2C2011391)was supported by the Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.2021-0-01806Development of security by design and security management technology in smart factory).
文摘Contemporary attackers,mainly motivated by financial gain,consistently devise sophisticated penetration techniques to access important information or data.The growing use of Internet of Things(IoT)technology in the contemporary convergence environment to connect to corporate networks and cloud-based applications only worsens this situation,as it facilitates multiple new attack vectors to emerge effortlessly.As such,existing intrusion detection systems suffer from performance degradation mainly because of insufficient considerations and poorly modeled detection systems.To address this problem,we designed a blended threat detection approach,considering the possible impact and dimensionality of new attack surfaces due to the aforementioned convergence.We collectively refer to the convergence of different technology sectors as the internet of blended environment.The proposed approach encompasses an ensemble of heterogeneous probabilistic autoencoders that leverage the corresponding advantages of a convolutional variational autoencoder and long short-term memory variational autoencoder.An extensive experimental analysis conducted on the TON_IoT dataset demonstrated 96.02%detection accuracy.Furthermore,performance of the proposed approach was compared with various single model(autoencoder)-based network intrusion detection approaches:autoencoder,variational autoencoder,convolutional variational autoencoder,and long short-term memory variational autoencoder.The proposed model outperformed all compared models,demonstrating F1-score improvements of 4.99%,2.25%,1.92%,and 3.69%,respectively.
文摘Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050.However,they are exceedingly unpredictable since they rely highly on weather and atmospheric conditions.In microgrids,smart energy management systems,such as integrated demand response programs,are permanently established on a step-ahead basis,which means that accu-rate forecasting of wind speed and solar irradiance intervals is becoming increasingly crucial to the optimal operation and planning of microgrids.With this in mind,a novel“bidirectional long short-term memory network”(Bi-LSTM)-based,deep stacked,sequence-to-sequence autoencoder(S2SAE)forecasting model for predicting short-term solar irradiation and wind speed was developed and evaluated in MATLAB.To create a deep stacked S2SAE prediction model,a deep Bi-LSTM-based encoder and decoder are stacked on top of one another to reduce the dimension of the input sequence,extract its features,and then reconstruct it to produce the forecasts.Hyperparameters of the proposed deep stacked S2SAE forecasting model were optimized using the Bayesian optimization algorithm.Moreover,the forecasting performance of the proposed Bi-LSTM-based deep stacked S2SAE model was compared to three other deep,and shallow stacked S2SAEs,i.e.,the LSTM-based deep stacked S2SAE model,gated recurrent unit-based deep stacked S2SAE model,and Bi-LSTM-based shallow stacked S2SAE model.All these models were also optimized and modeled in MATLAB.The results simulated based on actual data confirmed that the proposed model outperformed the alternatives by achieving an accuracy of up to 99.7%,which evidenced the high reliability of the proposed forecasting.
基金supported by the National Natural Science Foundation of China(Grant Nos.51979253,51879245)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant No.CUGCJ1821).
文摘Objective and accurate evaluation of rock mass quality classification is the prerequisite for reliable sta-bility assessment.To develop a tool that can deliver quick and accurate evaluation of rock mass quality,a deep learning approach is developed,which uses stacked autoencoders(SAEs)with several autoencoders and a softmax net layer.Ten rock parameters of rock mass rating(RMR)system are calibrated in this model.The model is trained using 75%of the total database for training sample data.The SAEs trained model achieves a nearly 100%prediction accuracy.For comparison,other different models are also trained with the same dataset,using artificial neural network(ANN)and radial basis function(RBF).The results show that the SAEs classify all test samples correctly while the rating accuracies of ANN and RBF are 97.5%and 98.7%,repectively,which are calculated from the confusion matrix.Moreover,this model is further employed to predict the slope risk level of an abandoned quarry.The proposed approach using SAEs,or deep learning in general,is more objective and more accurate and requires less human inter-vention.The findings presented here shall shed light for engineers/researchers interested in analyzing rock mass classification criteria or performing field investigation.
基金The Deanship of Scientific Research(DSR)at King Abdulaziz University(KAU),Jeddah,Saudi Arabia has funded this project,under Grant No.(IFPDP-279-22).
文摘The Internet of things(IoT)is an emerging paradigm that integrates devices and services to collect real-time data from surroundings and process the information at a very high speed to make a decision.Despite several advantages,the resource-constrained and heterogeneous nature of IoT networks makes them a favorite target for cybercriminals.A single successful attempt of network intrusion can compromise the complete IoT network which can lead to unauthorized access to the valuable information of consumers and industries.To overcome the security challenges of IoT networks,this article proposes a lightweight deep autoencoder(DAE)based cyberattack detection framework.The proposed approach learns the normal and anomalous data patterns to identify the various types of network intrusions.The most significant feature of the proposed technique is its lower complexity which is attained by reducing the number of operations.To optimally train the proposed DAE,a range of hyperparameters was determined through extensive experiments that ensure higher attack detection accuracy.The efficacy of the suggested framework is evaluated via two standard and open-source datasets.The proposed DAE achieved the accuracies of 98.86%,and 98.26%for NSL-KDD,99.32%,and 98.79%for the UNSW-NB15 dataset in binary class and multi-class scenarios.The performance of the suggested attack detection framework is also compared with several state-of-the-art intrusion detection schemes.Experimental outcomes proved the promising performance of the proposed scheme for cyberattack detection in IoT networks.
基金supported by Chongqing Big Data Engineering Laboratory for Children,Chongqing Electronics Engineering Technology Research Center for Interactive Learning,Project of Science and Technology Research Program of Chongqing Education Commission of China. (No.KJZD-K201801601).
文摘The attacks on in-vehicle Controller Area Network(CAN)bus messages severely disrupt normal communication between vehicles.Therefore,researches on intrusion detection models for CAN have positive business value for vehicle security,and the intrusion detection technology for CAN bus messages can effectively protect the invehicle network from unlawful attacks.Previous machine learning-based models are unable to effectively identify intrusive abnormal messages due to their inherent shortcomings.Hence,to address the shortcomings of the previous machine learning-based intrusion detection technique,we propose a novel method using Attention Mechanism and AutoEncoder for Intrusion Detection(AMAEID).The AMAEID model first converts the raw hexadecimal message data into binary format to obtain better input.Then the AMAEID model encodes and decodes the binary message data using a multi-layer denoising autoencoder model to obtain a hidden feature representation that can represent the potential features behind the message data at a deeper level.Finally,the AMAEID model uses the attention mechanism and the fully connected layer network to infer whether the message is an abnormal message or not.The experimental results with three evaluation metrics on a real in-vehicle CAN bus message dataset outperform some traditional machine learning algorithms,demonstrating the effectiveness of the AMAEID model.
基金supported in part by the National Natural Science Foundation of China under Grant 62076199in part by the Open Research Fund of Beijing Key Laboratory of Big Data Technology for Food Safety under Grant BTBD‐2020KF08Beijing Technology and Business University,and in part by the Key R&D project of Shaan'xi Province under Grant 2021GY‐027 and 2022ZDLGY01‐03.
文摘Recently,the autoencoder(AE)based method plays a critical role in the hyperspectral anomaly detection domain.However,due to the strong generalised capacity of AE,the abnormal samples are usually reconstructed well along with the normal background samples.Thus,in order to separate anomalies from the background by calculating reconstruction errors,it can be greatly beneficial to reduce the AE capability for abnormal sample reconstruction while maintaining the background reconstruction performance.A memory‐augmented autoencoder for hyperspectral anomaly detection(MAENet)is proposed to address this challenging problem.Specifically,the proposed MAENet mainly consists of an encoder,a memory module,and a decoder.First,the encoder transforms the original hyperspectral data into the low‐dimensional latent representation.Then,the latent representation is utilised to retrieve the most relevant matrix items in the memory matrix,and the retrieved matrix items will be used to replace the latent representation from the encoder.Finally,the decoder is used to reconstruct the input hyperspectral data using the retrieved memory items.With this strategy,the background can still be reconstructed well while the abnormal samples cannot.Experiments conducted on five real hyperspectral anomaly data sets demonstrate the superiority of the proposed method.
基金supported by the National Natural Science Foundation of China(62203431)。
文摘The widespread usage of Cyber Physical Systems(CPSs)generates a vast volume of time series data,and precisely determining anomalies in the data is critical for practical production.Autoencoder is the mainstream method for time series anomaly detection,and the anomaly is judged by reconstruction error.However,due to the strong generalization ability of neural networks,some abnormal samples close to normal samples may be judged as normal,which fails to detect the abnormality.In addition,the dataset rarely provides sufficient anomaly labels.This research proposes an unsupervised anomaly detection approach based on adversarial memory autoencoders for multivariate time series to solve the above problem.Firstly,an encoder encodes the input data into low-dimensional space to acquire a feature vector.Then,a memory module is used to learn the feature vector’s prototype patterns and update the feature vectors.The updating process allows partial forgetting of information to prevent model overgeneralization.After that,two decoders reconstruct the input data.Finally,this research uses the Peak Over Threshold(POT)method to calculate the threshold to determine anomalous samples from normal samples.This research uses a two-stage adversarial training strategy during model training to enlarge the gap between the reconstruction error of normal and abnormal samples.The proposed method achieves significant anomaly detection results on synthetic and real datasets from power systems,water treatment plants,and computer clusters.The F1 score reached an average of 0.9196 on the five datasets,which is 0.0769 higher than the best baseline method.
基金supported in part by the National Natural Science Foundation of China under Grant U1734211.
文摘Railway turnout is one of the critical equipment of Switch&Crossing(S&C)Systems in railway,related to the train’s safety and operation efficiency.With the advancement of intelligent sensors,data-driven fault detection technology for railway turnout has become an important research topic.However,little research in the literature has investigated the capability of data-driven fault detection technology for metro railway turnout.This paper presents a convolutional autoencoder-based fault detection method for the metro railway turnout considering human field inspection scenarios.First,the one-dimensional original time-series signal is converted into a twodimensional image by data pre-processing and 2D representation.Next,a binary classification model based on the convolutional autoencoder is developed to implement fault detection.The profile and structure information can be captured by processing data as images.The performance of our method is evaluated and tested on real-world operational current data in themetro stations.Experimental results show that the proposedmethod achieves better performance,especially in terms of error rate and specificity,and is robust in practical engineering applications.
基金Taif University Researchers Supporting Project Number(TURSP-2020/161)Taif University,Taif,Saudi Arabia.
文摘The recently developed machine learning(ML)models have the ability to obtain high detection rate using biomedical signals.Therefore,this article develops an Optimal Sparse Autoencoder based Sleep Stage Classification Model on Electroencephalography(EEG)Biomedical Signals,named OSAE-SSCEEG technique.The major intention of the OSAE-SSCEEG technique is tofind the sleep stage disorders using the EEG biomedical signals.The OSAE-SSCEEG technique primarily undergoes preprocessing using min-max data normalization approach.Moreover,the classification of sleep stages takes place using the Sparse Autoencoder with Smoothed Regularization(SAE-SR)with softmax(SM)approach.Finally,the parameter optimization of the SAE-SR technique is carried out by the use of Coyote Optimization Algorithm(COA)and it leads to boosted classification efficiency.In order to ensure the enhanced performance of the OSAE-SSCEEG technique,a wide ranging simulation analysis is performed and the obtained results demonstrate the betterment of the OSAE-SSCEEG tech-nique over the recent methods.
基金supported by the MSIT (Ministry of Science and ICT),Korea,under the ITRC (Information Technology Research Center)support program (IITP-2018-0-01405)supervised by the IITP (Institute for Information&Communications Technology Planning&Evaluation).
文摘Recently,the importance of data analysis has increased significantly due to the rapid data increase.In particular,vehicle communication data,considered a significant challenge in Intelligent Transportation Systems(ITS),has spatiotemporal characteristics and many missing values.High missing values in data lead to the decreased predictive performance of models.Existing missing value imputation models ignore the topology of transportation net-works due to the structural connection of road networks,although physical distances are close in spatiotemporal image data.Additionally,the learning process of missing value imputation models requires complete data,but there are limitations in securing complete vehicle communication data.This study proposes a missing value imputation model based on adversarial autoencoder using spatiotemporal feature extraction to address these issues.The proposed method replaces missing values by reflecting spatiotemporal characteristics of transportation data using temporal convolution and spatial convolution.Experimental results show that the proposed model has the lowest error rate of 5.92%,demonstrating excellent predictive accuracy.Through this,it is possible to solve the data sparsity problem and improve traffic safety by showing superior predictive performance.
基金National Natural Science Foundation of China(No.62001098)Fundamental Research Funds for the Central Universities of Ministry of Education of China(No.2232020D-33)。
文摘Deep learning(DL)has shown its superior performance in dealing with various computer vision tasks in recent years.As a simple and effective DL model,autoencoder(AE)is popularly used to decompose hyperspectral images(HSIs)due to its powerful ability of feature extraction and data reconstruction.However,most existing AE-based unmixing algorithms usually ignore the spatial information of HSIs.To solve this problem,a hypergraph regularized deep autoencoder(HGAE)is proposed for unmixing.Firstly,the traditional AE architecture is specifically improved as an unsupervised unmixing framework.Secondly,hypergraph learning is employed to reformulate the loss function,which facilitates the expression of high-order similarity among locally neighboring pixels and promotes the consistency of their abundances.Moreover,L_(1/2)norm is further used to enhance abundances sparsity.Finally,the experiments on simulated data,real hyperspectral remote sensing images,and textile cloth images are used to verify that the proposed method can perform better than several state-of-the-art unmixing algorithms.
基金This research work is supported by the Deputyship of Research&Innovation,Ministry of Education in Saudi Arabia(Grant Number 758).
文摘Visual motion segmentation(VMS)is an important and key part of many intelligent crowd systems.It can be used to figure out the flow behavior through a crowd and to spot unusual life-threatening incidents like crowd stampedes and crashes,which pose a serious risk to public safety and have resulted in numerous fatalities over the past few decades.Trajectory clustering has become one of the most popular methods in VMS.However,complex data,such as a large number of samples and parameters,makes it difficult for trajectory clustering to work well with accurate motion segmentation results.This study introduces a spatial-angular stacked sparse autoencoder model(SA-SSAE)with l2-regularization and softmax,a powerful deep learning method for visual motion segmentation to cluster similar motion patterns that belong to the same cluster.The proposed model can extract meaningful high-level features using only spatial-angular features obtained from refined tracklets(a.k.a‘trajectories’).We adopt l2-regularization and sparsity regularization,which can learn sparse representations of features,to guarantee the sparsity of the autoencoders.We employ the softmax layer to map the data points into accurate cluster representations.One of the best advantages of the SA-SSAE framework is it can manage VMS even when individuals move around randomly.This framework helps cluster the motion patterns effectively with higher accuracy.We put forward a new dataset with itsmanual ground truth,including 21 crowd videos.Experiments conducted on two crowd benchmarks demonstrate that the proposed model can more accurately group trajectories than the traditional clustering approaches used in previous studies.The proposed SA-SSAE framework achieved a 0.11 improvement in accuracy and a 0.13 improvement in the F-measure compared with the best current method using the CUHK dataset.
文摘In this paper, we introduce a novel scheme for the separate training of deep learning-based autoencoders used for Channel State Information (CSI) feedback. Our distinct training approach caters to multiple users and base stations, enabling independent and individualized local training. This ensures the more secure processing of data and algorithms, different from the commonly adopted joint training method. To maintain comparable performance with joint training, we present two distinct training methods: separate training decoder and separate training encoder. It’s noteworthy that conducting separate training for the encoder can pose additional challenges, due to its responsibility in acquiring a compressed representation of underlying data features. This complexity makes accommodating multiple pre-trained decoders for just one encoder a demanding task. To overcome this, we design an adaptation layer architecture that effectively minimizes performance losses. Moreover, the flexible training strategy empowers users and base stations to seamlessly incorporate distinct encoder and decoder structures into the system, significantly amplifying the system’s scalability. .