期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Development of multi-physics numerical simulation model to investigate thermo-mechanical fatigue crack propagation in an autofrettaged gun barrel 被引量:3
1
作者 Naveed Hussain Faisal Qayyum +1 位作者 Riffat Asim Pasha Masood Shah 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第5期1579-1591,共13页
In this research,a detailed multi-physics study has been carried out by numerically simulating a solid fractured gun barrel for 20 thermo-mechanical cycles.The numerical model is based on thermal effects,mechanical st... In this research,a detailed multi-physics study has been carried out by numerically simulating a solid fractured gun barrel for 20 thermo-mechanical cycles.The numerical model is based on thermal effects,mechanical stress fields and fatigue crack mechanics.Elastic-plastic material data of modified AISI 4340 at temperatures ranging from 25 to 1200℃and at strain rates of 4,16,32 and 48 s^(-1) was acquired from high-temperature compression tests.This was used as material property data in the simulation model.The boundary conditions applied are kept similar to the working gun barrel during continuous firing.A methodology has been provided to define thermo-mechanically active surface-to-surface type interface between the crack faces for a better approximation of stresses at the crack tip.Comparison of results from non-autofrettaged and autofrettaged simulation models provide useful information about the evolution of strains and stresses in the barrel at different points under combined thermo-mechanical loading cycles in both cases.The effect of thermal fatigue under already induced compressive yield due to autofrettage and the progressive degradation of the accumulated stresses due to thermo-mechanical cyclic loads on the internal surface of the gun barrel(mimicking the continuous firing scenario)has been analyzed.Comparison between energy release rate at tips of varying crack lengths due to cyclic thermo-mechanical loading in the non-autofrettaged and autofrettaged gun has been carried out. 展开更多
关键词 Steel autofrettage Gun barrel Crack propagation Thermo-mechanical fatigue Numerical simulation Residual stress dissipation
下载PDF
Analysis on Autofrettage of Cylinders 被引量:3
2
作者 ZHU Ruilin ZHU Guolin TANG Feng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第3期615-623,共9页
Autofrettage is an effective technique to improve load-bearing capacity and safety for pressure vessels.For autofrettaged cylinder,the depth of plastic zone,or overstrain is a key factor which affects load-bearing cap... Autofrettage is an effective technique to improve load-bearing capacity and safety for pressure vessels.For autofrettaged cylinder,the depth of plastic zone,or overstrain is a key factor which affects load-bearing capacity and safety.The previous research on overstrain was not done in terms of the point of view of raising load-bearing capacity as far as possible and simultaneously avoiding compressive yield for cylinders experiencing autofrettage handling,and there were no analytic solutions of autofrettage in the above view point presented,the 3rd and 4th strength theories were not applied synthetically in the research to compare the results from these two theories.In this paper,with the aid of the analytic method,based on summing up the authors' previous research,results from autofrettage of a cylinder based on the 3rd and 4th strength theories are studied and compared,and the laws contained in the results are looked into.Then,the essential cause and reason for the obtained laws are analyzed and the inherent and meaning relations between various parameters in autofrettage theory are revealed.It is shown that the maximum radius ratio for equivalent residual stress at inside surface never exceeds the yield strength even for a cylinder experiencing wholly yielded autofrettage,or the critical radius ratio is kc=2.218 457 489 916 7…,irrespective of the 3rd or 4th strength theories.The equation relating the depth of plastic zone with the thickness of a cylinder is identical for the 3rd and 4th strength theories.In form,the optimum load-bearing capacity of an autofrettaged cylinder is two times the initial yield pressure of the unautofrettaged cylinder irrespective of the 3rd or 4th strength theory.The revealed inherent relations between various parameters and varying laws of the parameters as well as the forms of the relations under the 3rd and 4th strength theories not only have theoretical meanings but also have prospects in engineering application. 展开更多
关键词 pressure vessel autofrettage load-bearing capacity strength theory
下载PDF
ULTIMATE LOAD-BEARING CAPACITY OF CYLINDER DERIVED FROM AUTOFRETTAGE UNDER IDEAL CONDITION 被引量:14
3
作者 ZHU Ruilin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第5期80-87,共8页
According to the basic theory on autofrettage and according to the 4th strength theory, several parameters and their relations are studied under ideal condition, including σej/σy, the equivalent stress of total stre... According to the basic theory on autofrettage and according to the 4th strength theory, several parameters and their relations are studied under ideal condition, including σej/σy, the equivalent stress of total stresses at elastoplastic juncture; σei/σy, the equivalent stress of total stresses at inside surface; σej'/σy, the equivalent stress of residual stresses at elastoplastic juncture; σei'/σy, the equivalent stress of residual stresses at inside surface; and p/σy, load-bearing capacity of an autofrettaged cylinder. By theoretical study on relations between the parameters, noticeable results and laws are achieved: to satisfy |σei'|=σy. the relation between kj and k is, k^2lnkj^2-k^2-kj^2+2=0, when k→∞, kj = √e = 1.648 72, as based on the 3rd strength theory, where k is the outside/inside radius ratio of a cylinder, kj is the ratio of elastoplastic juncture radius to inside radius of a cylinder; If the plastic region covers the whole wall of a cylinder, for compressive yield not to occur after removing autofrettage pressure, the ultimate k is k=-2.218 46 as based on the 3rd strength theory; With k=2.218 46, a cylinder's ultimate load-bearing capacity equals its entire yield pressure, or p/σy=21nk/√3; The maximum and optimum load-bearing capacity of an autofrettaged cylinder is just 2 times the loading which an unautofrettaged cylinder can bear elastically, or p/σy=2(k^2-1)/√3 k^2, and the limit of the load-bearing capacity of an autofrettaged cylinder is also just 2 times that of an unautofrettaged cylinder. The conclusions are the same as based on the 3rd strength theory, but some equations are different from each other. 展开更多
关键词 Cylinder autofrettage Load-bearing capacity
下载PDF
Effect of Optimum Plastic Depth on Stresses and Load-bearing Capacity of Autofrettaged Cylinder 被引量:2
4
作者 ZHU Ruilin ZHU Guolin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第2期365-370,共6页
Autofrettage is an effective measure to even distribution of stresses and raise load-bearing capacity for (ultra-)high pressure apparatus. Currently, the research on autofrettage has focused mostly on specific engin... Autofrettage is an effective measure to even distribution of stresses and raise load-bearing capacity for (ultra-)high pressure apparatus. Currently, the research on autofrettage has focused mostly on specific engineering problems, while general theoretical study is rarely done. To discover the general law contained in autofrettage theory, by the aid of the authors’ previous work and according to the third strength theory, theoretical problems about autofrettage are studied including residual stresses and their equivalent stress, total stresses and their equivalent stress, etc. Because of the equation of optimum depth of plastic zone which is presented in the authors’ previous work, the equations for the residual stresses and their equivalent stress as well as the total stress and their equivalent stress are simplified greatly. Thus the law of distribution of the residual stresses and their equivalent stress as well as the total stress and their equivalent stress and the varying tendency of these stresses are discovered. The relation among various parameters are revealed. The safe and optimum load-bearing conditions for cylinders are obtained. According to the results obtained by theoretical analysis, it is shown that if the two parameters, namely ratio of outside to inside radius, k, and depth of plastic zone, kj, meet the equation of optimum depth of plastic zone, when the pressure contained in an autofrettaged cylinder is lower than two times the initial yield pressure of the unautofrettaged cylinder, the equivalent residual stress and the equivalent total stress at the inside surface as well as the elastic-plastic juncture of a cylinder are lower than yield strength. When an autofrettaged cylinder is subjected to just two times the initial yield pressure of the unautofrettaged cylinder, the equivalent total stress within the whole plastic zone is just identically equal to the yield strength, or it is a constant. The proposed research theoretically depicts the stress state of ultra-)high pressure autofrettaged cylinder more accurately and more reasonably and provides the reference for design of (ultra-)high pressure apparatus. 展开更多
关键词 thick-wall cylinder autofrettage residual stress load-bearing capacity
下载PDF
The detrimental effect of autofrettage on externally cracked modern tank gun barrels 被引量:1
5
作者 M.Perl T.Saley 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第2期146-153,共8页
Overstraining gun tubes has a twofold advantage. First, it enables the increase of the Safe Maximum Pressure(SMP) in the tube, resulting in a higher muzzle velocity which extends the gun's range and its projectile... Overstraining gun tubes has a twofold advantage. First, it enables the increase of the Safe Maximum Pressure(SMP) in the tube, resulting in a higher muzzle velocity which extends the gun's range and its projectile kinetic energy. Second, it reduces the tube's susceptibility to internal cracking which prolongs its fatigue life. Unfortunately, autofrettage also bears an inherent detrimental effect as it considerably increases the tensile hoop stress at the outer portion of the barrel's wall, which enhances external cracking of the tube by increasing the prevailing Stress Intensity Factor(SIF). In order to quantify this disadvantageous effect, 3-D Mode I SIFs distributions along the front of a single external radial semielliptical crack initiating from the outer surface of an autofrettaged modern gun barrel, overstrained by either the Swage or the Hydraulic autofrettage processes, are evaluated. The analysis is performed by the finite element(FE) method, using singular elements along the crack front. Innovative residual stress fields(RSFs), incorporating the Bauschinger effect for both types of autofrettage are applied to the barrel.Hill's [1] RSF is also applied to the tube for comparison reasons. All three RSFs are incorporated in the FE analysis, using equivalent temperature fields, Values for K_(IA)-the SIF resulting from the tensile residual stresses induced by autofrettage are evaluated for: a typical barrel of radii ratio R_o/R_i = 2, crack depth to wall-thickness ratios(a/t = 0.005-0.1),crack ellipticities(a/c = 0.2-1.0),and five levels of Swage,Hydraulic and Hill's autofrettage(e = 40%,60%,70%,80%,and 100%). In total,375 different 3-D cases are analyzed. The analysis demonstrates undoubtedly the detrimental effect of all types of autofrettage in increasing the prevailing effective stress intensity factor of external cracks, resulting in crack initiation enhancement and crack growth rate acceleration which considerably shortens the total fatigue life of the barrel. Nonetheless, the detrimental effect is autofrettage-type dependent. Swage and Hydraulic autofrettage RSFs differ substantially from each other. The disadvantageous effect of Swage autofrettage is much greater than that resulting from Hydraulic autofrettage. The results also emphasize the significance of the Bauschinger effect and the importance of the 3-D analysis. 展开更多
关键词 GUN BARREL Swage and HYDRAULIC autofrettage External CRACK 3-D Finite element
下载PDF
Optimum Autofrettage Pressure of Hydrogen Valve Using Finite Element and Fatigue Analysis 被引量:1
6
作者 Slawomir Kedziora Thanh Binh Cao 《Engineering(科研)》 2020年第1期1-24,共24页
The presented article shows an estimation method of optimum autofrettage pressure taking into consideration subsequent cyclic loading. An autofrettage process is used in pressure vessel applications for strength impro... The presented article shows an estimation method of optimum autofrettage pressure taking into consideration subsequent cyclic loading. An autofrettage process is used in pressure vessel applications for strength improvement. The process relies on applying massive pressure that causes internal portions of the part to yield plastically, resulting in internal compressive residual stresses when pressure is released. Later applied working pressure (much lower than autofrettage pressure) creates stress reduced by the residual compressive stress improving the structural performance of the pressure vessels. The optimum autofrettage pressure is a load that maximizes the fatigue life of the structure at the working load. The estimation method of that pressure of a hydrogen valve is the subject of the presented work. Finite element and fatigue analyses were employed to investigate the presented problem. An automated model was developed to analyze the design for various autofrettage pressures. As the results of the procedure, the optimum autofrettage pressure is determined. The research has shown that the developed method can profitably investigate the complex parts giving the autofrettage load that maximizes the fatigue life. The findings suggest that the technique can be applied to a large group of products subjected to the autofrettage process. 展开更多
关键词 autofrettage HYDROGEN VALVE FINITE Element Analysis Fatigue Design
下载PDF
Determination of Residuals Stresses Induced by the Autofrettage Treatment by the X-Rays Diffraction Method
7
作者 Naziha Zerari Tarik Saidouni Abdelouaheb Benretem 《Modern Mechanical Engineering》 2013年第3期121-126,共6页
Some meaningful advances have been made these last years to value precise and reliable way the residual stresses experimentally created by the autofrettage. The autofrettage process is used widely to introduce residua... Some meaningful advances have been made these last years to value precise and reliable way the residual stresses experimentally created by the autofrettage. The autofrettage process is used widely to introduce residual stresses into thick walled tubes;traditionally residual stresses have been measured using the Sachs method destructive or non-destructive methods. In this paper we describe the application of the X-rays diffraction;this technique permits to justify the presence of the compressive tangential residual stresses, and to value their distribution after two different autofrettage internal pressures loading. The results show that there is a large difference in the residual stresses find in the different autofrettege pressure. One can see the influence of the autofrettage’s pressure quantity on residual stresses created in the thickness of the test tubes. 展开更多
关键词 autofrettage ELASTO-PLASTIC RESIDUAL Stresses X-Rays DIFFRACTION
下载PDF
机械原理解析法课程设计程序开发
8
作者 张晋西 《重庆理工大学学报(自然科学)》 CAS 1995年第S1期44-47,共4页
机械原理解析法课程设计程序开发张晋西(重庆工业管理学院机械系)《机械原理》是高校机械类学生开设的一门重要技术基础课程。为提高教学质量,配合学校大力提倡的计算机辅助教学(CAI),最近笔者编制了一套计算机软件《机械原理... 机械原理解析法课程设计程序开发张晋西(重庆工业管理学院机械系)《机械原理》是高校机械类学生开设的一门重要技术基础课程。为提高教学质量,配合学校大力提倡的计算机辅助教学(CAI),最近笔者编制了一套计算机软件《机械原理解析法课程设计程序》及其配套讲义《... 展开更多
关键词 thick-wall PRESSURE VESSEL autofrettage the THIRD strength theory equivalent stress maximum operating PRESSURE WHOLE yield
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部