期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Stress analytical solution for plane problem of a double-layered thick-walled cylinder subjected to a type of non-uniform distributed pressure 被引量:4
1
作者 吴庆良 吕爱钟 +2 位作者 高永涛 吴顺川 张宁 《Journal of Central South University》 SCIE EI CAS 2014年第5期2074-2082,共9页
The stress state around circular openings,such as boreholes,shafts,and tunnels,is usually needed to be evaluated.Solutions for stresses,strains and ultimate bearing capacities of pressurized hollow cylinder are common... The stress state around circular openings,such as boreholes,shafts,and tunnels,is usually needed to be evaluated.Solutions for stresses,strains and ultimate bearing capacities of pressurized hollow cylinder are common cases.Stress analytical method for plane problem of a double-layered thick-walled cylinder subjected to a type of non-uniform pressure on the outer surface and uniform radial pressure on the inner surface is given.The power series method of complex function is used.The stress analytical solution is obtained with the assumption that two layers of a cylinder are fully contacted.The distributions of normal and tangential contact stress along the interface,tangential stress on the inner boundary and stresses in the radial direction at θ=0°,45° and 90°,are obtained.An example indicates that,when the elastic modulus of the inner layer of a double-layered thick-walled cylinder is smaller than that of the outer layer,the tangential stress is smaller than that in the corresponding point for a traditional cylinder composed of homogeneous materials.In that way,stress concentration at the inner surface can be alleviated and the stress distribution is more uniform.This is a capable way to enhance the elastic ultimate bearing capacity of thick-walled cylinder. 展开更多
关键词 thick-walled cylinder stress analytical solution complex variable function non-uniform distributed pressure stressconcentration combination of different elastic moduli
下载PDF
Simulation on flow, heat transfer and stress characteristics of large-diameter thick-walled gas cylinders in quenching process under different water spray volumes 被引量:2
2
作者 GAO Jing-na GAO Ying +2 位作者 XU Qin-ran WANG Ge LI Qiang 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第11期3188-3199,共12页
Cooling strength is one of the important factors affecting microstructure and properties of gas cylinders during quenching process,and reasonable water spray volume can effectively improve the quality of gas cylinders... Cooling strength is one of the important factors affecting microstructure and properties of gas cylinders during quenching process,and reasonable water spray volume can effectively improve the quality of gas cylinders and reduce production costs.To find the optimal water spray parameters,a fluid-solid coupling model with three-phase flow was established in consideration of water-vapor conversion.The inner and outer walls of gas cylinder with the dimensions of d914 mm×38 mm×12000 mm were quenched using multi-nozzle water spray system.The internal pressure,average heat transfer coefficient(have)and stress of the gas cylinder under different water spray volumes during quenching process were studied.Finally,the mathematical model was experimentally verified.The results show that both the internal pressure and have increase along with the increase of spray volume.The internal pressure increases slowly first and then rapidly,but have increases rapidly first and then slowly.To satisfy hardenability of gas cylinders,the minimum spray volume should not be less than 40 m^3/(h·m).The results of stress indicate that water spray quenching will not cause deformation of bottle body in the range of water volume from 40 to 290 m^3/(h·m). 展开更多
关键词 large-diameter thick-walled gas cylinders QUENCHING water spray volume heat transfer STRESS numerical simulation
下载PDF
Limit analysis of viscoplastic thick-walled cylinder and spherical shell under internal pressure using a strain gradient plasticity theory 被引量:2
3
作者 李茂林 扶名福 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第12期1553-1559,共7页
Plastic limit load of viscoplastic thick-walled cylinder and spherical shell subjected to internal pressure is investigated analytically using a strain gradient plasticity theory. As a result, the current solutions ca... Plastic limit load of viscoplastic thick-walled cylinder and spherical shell subjected to internal pressure is investigated analytically using a strain gradient plasticity theory. As a result, the current solutions can capture the size effect at the micron scale. Numerical results show that the smaller the inner radius of the cylinder or spherical shell, the more significant the scale effects. Results also show that the size effect is more evident with increasing strain or strain-rate sensitivity index. The classical plastic-based solutions of the same problems are shown to be a special case of the present solution. 展开更多
关键词 thick-walled cylinder and spherical shell strain gradient NONLOCAL VISCOPLASTICITY
下载PDF
Reduction of the residual stresses in cold expanded thick-walled cylinders by plastic compression 被引量:1
4
作者 V.F. SKVORTSOV A.O. BOZNAK +2 位作者 A.B. KIM A. Yu ARLYAPOV A.I. DMITRIEV 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2016年第6期473-479,共7页
We suppose that in order to maintain high accuracy of holes and to lower residual stresses after cold expansion of thick-walled cylinders, which undergo cross-section plastic deformation, it is necessary to perform ax... We suppose that in order to maintain high accuracy of holes and to lower residual stresses after cold expansion of thick-walled cylinders, which undergo cross-section plastic deformation, it is necessary to perform axial plastic compression and subsequent cold expansion with small interferences. To test this hypothesis, we studied hoop, radial and axial residual stresses in cylinders made of carbon steel AISI 1050 with hole diameter of 5 mm, outer diameter of 15 mm and length of 30 mm by Sachs method as well as accuracy of expanded holes. It is found that double cold expansion with total interference equal to 5.1% generates hoop residual stresses with largest absolute value equal to 284 MPa and ensures high holes accuracy(IT7). After plastic compression with strain equal to 0.5 and 1% the mentioned stresses reduced to 120 and 75 MPa respectively,and accuracy of the holes reduced as well. Subsequent cold expansion with small interference equal to 0.9% helps to restore holes accuracy(IT7)gained by double cold expansion and ensure that absolute value of hoop residual stresses(177 MPa) is lower compared to double cold expansion. 展开更多
关键词 thick-walled cylinders COLD EXPANSION PLASTIC compression RESIDUAL stresses
下载PDF
A borehole stability study by newly designed laboratory tests on thick-walled hollow cylinders 被引量:1
5
作者 S.S.Hashemi N.Melkoumian A.Taheri 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第5期519-531,共13页
At several mineral exploration drilling sites in Australia, weakly consolidated formations mainly consistof sand particles that are poorly bonded by cementing agents such as clay, iron oxide cement or calcite.These fo... At several mineral exploration drilling sites in Australia, weakly consolidated formations mainly consistof sand particles that are poorly bonded by cementing agents such as clay, iron oxide cement or calcite.These formations are being encountered when drilling boreholes to the depth of up to 2 0 0 m. To studythe behaviour of these materials, thick-walled hollow cylinder (TWHC) and solid cylindrical syntheticspecimens were designed and prepared by adding Portland cement and water to sand grains. The effectsof different parameters such as water and cement contents, grain size distribution and mixture curingtime on the characteristics of the samples were studied to identify the mixture closely resembling theformation at the drilling site. The Hoek triaxia! cell was modified to allow the visual monitoring of graindebonding and borehole breakout processes during the laboratory tests. The results showed the significanceof real-time visual monitoring in determining the initiation of the borehole breakout. The sizescaleeffect study on TWHC specimens revealed that with the increasing borehole size, the ductility ofthe specimen decreases, however, the axial and lateral stiffnesses of the TWHC specimen remain unchanged.Under different confining pressures the lateral strain at the initiation point of boreholebreakout is considerably lower in a larger size borehole (2 0 mm) compared to that in a smaller one(10 mm). Also, it was observed that the level of peak strength increment in TWHC specimens decreaseswith the increasing confining pressure. 展开更多
关键词 Real-time monitoring Experimental investigation thick-walled hollow cylinder(TWHC) Poorly cemented sand formations
下载PDF
Analysis of dynamic stress intensity factors of thick-walled cylinder under internal impulsive pressure 被引量:3
6
作者 Aijun Chen Lianfang Liao Dingguo Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第6期803-809,共7页
Dynamic stress intensity factors are evaluated for thick-walled cylinder with a radial edge crack under internal impulsive pressure. Firstly, the equation for stress intensity factors under static uniform pressure is ... Dynamic stress intensity factors are evaluated for thick-walled cylinder with a radial edge crack under internal impulsive pressure. Firstly, the equation for stress intensity factors under static uniform pressure is used as the reference case, and then the weight function for a thick-walled cylinder containing a radial edge crack can be worked out. Secondly, the dynamic stresses in uncracked thick-walled cylinders are solved under internal impulsive pressure by using mode shape function method. The solution consists of a quasi-static solution satisfying inhomogeneous boundary conditions and a dynamic solution satisfying homogeneous boundary condi- tions, and the history and distribution of dynamic stresses in thick-walled cylinders are derived in terms of Fourier-Bessel series. Finally, the dynamic stress intensity factor equations for thick-walled cylinder containing a radial edge crack sub- jected to internal impulsive pressure are given by dynamic weight function method. The finite element method is utilized to verify the results of numerical examples, showing the validity and feasibility of the proposed method. 展开更多
关键词 thick-walled cylinder . Cracks .Dynamic stress intensity factors . Weight function methodMode shape function
下载PDF
Ringlike failure experiment of thick-walled limestone cylinder specimens in triaxial unloading tests 被引量:2
7
作者 Zhang Houquan He Yongnian Liu Honggang Han Lijun Shao Peng 《Mining Science and Technology》 EI CAS 2011年第3期445-450,共6页
In order to study the failure of surrounding rock under high in situ stress in deep underground engineering projects, disturbed by excavation unloading, we carried out triaxial unloading experiments using thickwalled ... In order to study the failure of surrounding rock under high in situ stress in deep underground engineering projects, disturbed by excavation unloading, we carried out triaxial unloading experiments using thickwalled cylinder specimens on a TATW-2000 rock servo-controlled triaxial testing machine in a laboratory. The specimens were made of limestone material, taken from Tongshan county, Xuzhou city, Jiangsu province, China. In our experiments, rock deformation and failure behavior was studied through loading and unloading of inner hole pressure of thick-walled cylinder specimens. At first, the axial stress, confining pressure and inner pressure were increased simultaneously to a specified designed state of stress. Then, keeping the axial stress and confining pressure stable, the pressure on the inner hole was decreased until the specimen was fractured. When the inner pressure was released completely but the specimen did not fracture, the confining pressure was decreased subsequently until complete failure occurred. Our experimental results suggest that traces of major circular ringlike fractures with a number of radial cracks often appear in thick cylinder walls. This type of ringlike failure phenomenon, similar to intermittent zonal fracturing characteristics of deep exploitation, has, so far, not been published. Our experimental results show that rock deformation and failure behavior of thick-walled limestone cylinders vary under different stress paths between loading and unloading. Tensile failure and orderly failure surfaces occur under unloading conditions while irregular damaged rock blocks are produced during loading failure. This type of triaxial unloading experiment provides for new research methodology and approach for thorough investigations on intermittent zonal fracturing in deep underground excavations. 展开更多
关键词 thick-walled cylinder specimens Triaxial tests Unloading Ringlike failure
下载PDF
Effect of Optimum Plastic Depth on Stresses and Load-bearing Capacity of Autofrettaged Cylinder 被引量:2
8
作者 ZHU Ruilin ZHU Guolin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第2期365-370,共6页
Autofrettage is an effective measure to even distribution of stresses and raise load-bearing capacity for (ultra-)high pressure apparatus. Currently, the research on autofrettage has focused mostly on specific engin... Autofrettage is an effective measure to even distribution of stresses and raise load-bearing capacity for (ultra-)high pressure apparatus. Currently, the research on autofrettage has focused mostly on specific engineering problems, while general theoretical study is rarely done. To discover the general law contained in autofrettage theory, by the aid of the authors’ previous work and according to the third strength theory, theoretical problems about autofrettage are studied including residual stresses and their equivalent stress, total stresses and their equivalent stress, etc. Because of the equation of optimum depth of plastic zone which is presented in the authors’ previous work, the equations for the residual stresses and their equivalent stress as well as the total stress and their equivalent stress are simplified greatly. Thus the law of distribution of the residual stresses and their equivalent stress as well as the total stress and their equivalent stress and the varying tendency of these stresses are discovered. The relation among various parameters are revealed. The safe and optimum load-bearing conditions for cylinders are obtained. According to the results obtained by theoretical analysis, it is shown that if the two parameters, namely ratio of outside to inside radius, k, and depth of plastic zone, kj, meet the equation of optimum depth of plastic zone, when the pressure contained in an autofrettaged cylinder is lower than two times the initial yield pressure of the unautofrettaged cylinder, the equivalent residual stress and the equivalent total stress at the inside surface as well as the elastic-plastic juncture of a cylinder are lower than yield strength. When an autofrettaged cylinder is subjected to just two times the initial yield pressure of the unautofrettaged cylinder, the equivalent total stress within the whole plastic zone is just identically equal to the yield strength, or it is a constant. The proposed research theoretically depicts the stress state of ultra-)high pressure autofrettaged cylinder more accurately and more reasonably and provides the reference for design of (ultra-)high pressure apparatus. 展开更多
关键词 thick-wall cylinder autofretTAGE residual stress load-bearing capacity
下载PDF
ELASTOPLASTIC ANALYSIS OF THICK-WALLCYLINDER CONSIDERING THE MATERIAL'S DILATANCY CHARACTER
9
作者 江崎哲郎 张铭 +1 位作者 竹下昭博 三谷泰浩 《Journal of China University of Mining and Technology》 1995年第1期66-73,共8页
Impermeable bentonite or its mixtures have been proposed as candidate materials to be used in the geotechnical disposal of radioactive nuclear waste. These materials are filled in the space between a canister containi... Impermeable bentonite or its mixtures have been proposed as candidate materials to be used in the geotechnical disposal of radioactive nuclear waste. These materials are filled in the space between a canister containing radioactive nuclear waste and an underground chamber to absorb the radionuclide emitting from the canister and simultaneously retard its migration accompanying the perrneation of underground water to prevent the surrounding environment from po1lution. On the basis of the established elastoplastic strain-hardening mechanical model considering the material’s dilatancy character,the authors carry out the stress-strain analysis of a thick-wa1l cylinder in a plane strain state subJected to a pressure difference between internal and external pressures. The analysis may be expected to be a theoretical basis for developing a coupled shear and permeability test apparatus for conducting a permeability test along a sheared plane in a specimen. The apparatus will be used to study the effects of shear strain on the variation of geotechnical materials’ permeability coefficient in order to evaluate the influence of shear strain caused by nonuniform deformation and/or earthquake on the long-term safety of the disposal system of radioactive nuclear waste. The theoretlcal analysls methods in this paper can be directly spread to the analysis of the deformation and stability of tunnels or roadways driven in soft soils or high moisture-bearing soft rocks. 展开更多
关键词 DILATANCY thick-wall cylinder elastoplastic analysis waste disposal bentonite mixture
下载PDF
Axisymmetric smooth contact for an elastic isotropic infinite hollow cylinder compressed by an outer rigid ring with circular profile 被引量:1
10
作者 A. Avci A. Bulu A. Yapici 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第1期46-53,共8页
A contact problem for an infinitely long hollow cylinder is considered. The cylinder is compressed by an outer rigid ring with a circular profile. The material of the cylinder is linearly elastic and isotropic. The ex... A contact problem for an infinitely long hollow cylinder is considered. The cylinder is compressed by an outer rigid ring with a circular profile. The material of the cylinder is linearly elastic and isotropic. The extent of the contact region and the pressure distribution are sought. Governing equations of the elasticity theory for the axisymmetric problem in cylindrical coordinates are solved by Fourier transforms and general expressions for the displacements are obtained. Using the boundary conditions, the formulation is reduced to a singular integral equation. This equation is solved by using the Gaussian quadrature. Then the pressure distribution on the contact region is determined. Numerical results for the contact pressure and the distance characterizing the contact area are given in graphical form. 展开更多
关键词 Elastostatic contact thick-walled cylinder Singular integral equation Rigid indenter
下载PDF
SIMULATION OF HOLE FLANGING PROCESS ON HEAVY CYLINDERS AND PARAMETER OPTIMIZATION
11
作者 LIU Jiansheng WANG Bing TIAN Jihong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第2期243-245,共3页
The forming mechanism of hole flanging on a thick-wall heavy cylinder forging is simulated by DEFORM3D. The cylinder is 4 390 mm in diameter and 390 mm in thickness. The results show that the compound deformation with... The forming mechanism of hole flanging on a thick-wall heavy cylinder forging is simulated by DEFORM3D. The cylinder is 4 390 mm in diameter and 390 mm in thickness. The results show that the compound deformation with bending and expanding happens in the process of hole flanging. The diameter of pre-hole of the workpiece is one of the key parameters in the process of hole flanging. The optimal diameter is obtained for reverse-conical hole of average diameter 40 mm by simulation of hole flanging process on 5 pre-holes with different diameters and 3 pre-holes with different shapes. The results can provide the scientific base for engineering application of the process. 展开更多
关键词 Hole flanging process thick-wall cylinder Numerical simulation Pre-hole
下载PDF
Analysis of a functionally graded piezothermoelastic hollow cylinder
12
作者 陈盈 石志飞 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第9期956-961,共6页
A long thick-walled hollow cylinder of piezothermoelastic materials was studied in this work. The gradient prop- erty of the piezoelectric parameter g31 was taken into account. The theory of elasticity was applied to ... A long thick-walled hollow cylinder of piezothermoelastic materials was studied in this work. The gradient prop- erty of the piezoelectric parameter g31 was taken into account. The theory of elasticity was applied to obtain the exact solutions of the cylinder subjected simultaneously to thermal and electric loadings. As an application, these solutions have been success- fully used to study the inverse problems of the material. For comparison, numerical results have been carried out for both graded and double-layered cylinders. 展开更多
关键词 FGM Piezothermoelastic materials thick-walled hollow cylinder Elastic analysis Inverse problem Parameter identification
下载PDF
Theoretical and numerical research on the dynamic launch response of carbon fiber composite cartridges
13
作者 Ruijie Zhang Hui Xu +2 位作者 Chenlei Huang Kun Liu Zhilin Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期426-436,共11页
Understanding the dynamic response of composite material cartridges during the firing process is of great significance for improving their reliability and safety.A theoretical model describing the dynamic response of ... Understanding the dynamic response of composite material cartridges during the firing process is of great significance for improving their reliability and safety.A theoretical model describing the dynamic response of composite material cartridges is established based on the thick-walled cylinder theory and rate-dependent constitutive model of composite materials.The correctness of the theoretical model is validated through finite element simulations of cartridge deformation.The influence of chamber pressure and cartridge wall thickness on the cartridge's deformation process and stress distribution is analyzed.The results indicate that the primary deformation of composite material cartridges inside the chamber is elastic deformation.Compared to metal cartridges,composite material cartridges require higher pressure for touching-chamber and are more prone to developing gaps after unloading to ensure smooth extraction.During the deformation process,the touching-chamber behavior of the cartridge can improve the stress distribution.Under the same chamber pressure,the touching-chamber behavior can reduce the circumferential stress by approximately 30%.The inner wall surface of the cartridge is a critical area that requires attention.The touching-chamber behavior can be facilitated by appropriately reducing the cartridge wall thickness while ensuring overall strength.This study can provide guidance for the optimization design of composite material cartridges. 展开更多
关键词 Composite material cartridges Dynamic response thick-walled cylinder theory Finite element simulation Toughing-chamber behavior
下载PDF
Analytical solution for spatially axisymmetric problem of thick-walled cylinder subjected to different linearly varying pressures along the axis and uniform pressures at two ends 被引量:1
14
作者 LIANG YaPing WANG HuiZhen REN XingMin 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2008年第1期98-104,共7页
To our best knowledge,in the open literature,there is no analytical solution of thick-walled cylinder subjected to uniform pressures at two ends and different inner-and outer-surface pressures that are constant circum... To our best knowledge,in the open literature,there is no analytical solution of thick-walled cylinder subjected to uniform pressures at two ends and different inner-and outer-surface pressures that are constant circumferentially but vary linearly at different rates along the axis.We now present such a solution.After repeated trials,we have finally succeeded in finding a necessary new displacement function.Based on A.E.H.Love method,the stress,displacement and volume strain formulas are derived by using the new displacement function.The present results include the Lamé’s formulas as special cases.Furthermore,the results obtained here can be applied to not only the thick-walled cylinders subjected to uniform pressures on the inner and outer surface of the thick-walled cylinder,respectively,but also the cylinders subjected to uniform pressures at two ends and dif- ferent inner-and outer-surface pressures that are constant circumferentially but vary linearly at different rates along the axis,respectively.Finally we give a numerical example to compare our exact method with the approximate method. 展开更多
关键词 thick-walled cylinder new displacement function spatially AXISYMMETRIC three-dimensional analytical solution
原文传递
Harmonic Standing-Wave Excitations of Simply-Supported Thick-Walled Hollow Elastic Circular Cylinders:Exact 3D Linear Elastodynamic Response
15
作者 Jamal Sakhr Blaine A.Chronik 《Advances in Applied Mathematics and Mechanics》 SCIE 2021年第1期18-57,共40页
The forced-vibration response of a simply-supported isotropic thick-walled hollow elastic circular cylinder subjected to two-dimensional harmonic standing-wave excitations on its curved surfaces is studied within the ... The forced-vibration response of a simply-supported isotropic thick-walled hollow elastic circular cylinder subjected to two-dimensional harmonic standing-wave excitations on its curved surfaces is studied within the framework of linear elastodynamics.Exact semi-analytical solutions for the steady-state displacement field of the cylinder are constructed using recently-published parametric solutions to the Navier-Lam´e equation.Formal application of the standing-wave boundary conditions generates three parameter-dependent 66 linear systems,each of which can be numerically solved in order to determine the parametric response of the cylinder’s displacement field under various conditions.The method of solution is direct and demonstrates a general approach that can be applied to solve many other elastodynamic forcedresponse problems involving isotropic elastic cylinders.As an application,and considering several examples,the obtained solution is used to compute the steady-state frequency response in a few specific low-order excitation cases.In each case,the solution generates a series of resonances that are in exact correspondence with a unique subset of the natural frequencies of the simply-supported cylinder.The considered problem is of general theoretical interest in structural mechanics and acoustics and more practically serves as a benchmark forced-vibration problem involving a thickwalled hollow elastic cylinder. 展开更多
关键词 thick-walled hollow elastic cylinders simply-supported thick cylindrical shells harmonic standing-wave boundary stresses forced vibration linear elastodynamic response
原文传递
单裂纹对自增强厚壁筒的影响研究 被引量:2
16
作者 周思柱 廖建敏 李宁 《科学技术与工程》 北大核心 2015年第15期1-6,共6页
分析了无裂纹时厚壁筒的应力计算方法,介绍了裂纹尖端位移外推的数值计算方法,采用Ansys软件研究了径比为1.7、裂纹长度为1 mm的厚壁筒在未自增强施加工作压力、自增强处理与自增强后施加工作压力三种工况下相对于无裂纹厚壁筒时的应力... 分析了无裂纹时厚壁筒的应力计算方法,介绍了裂纹尖端位移外推的数值计算方法,采用Ansys软件研究了径比为1.7、裂纹长度为1 mm的厚壁筒在未自增强施加工作压力、自增强处理与自增强后施加工作压力三种工况下相对于无裂纹厚壁筒时的应力变化规律。并分析了裂纹前缘自由表面的张开位移及裂尖应力强度因子。结果表明:裂纹的存在只影响厚壁筒在裂尖沿扩展方向一定长度范围内的应力大小与分布;经自增强处理后施加工作压力产生在裂纹尖端前缘自由表面处沿厚度方向张开度明显小于未自增强处理,对其尖端应力强度因子与裂纹前缘张开位移值的计算可由前两种工况计算下叠加而成。 展开更多
关键词 厚壁筒 自增强 应力分布 应力强度因子
下载PDF
一种自紧厚壁圆筒非线性混合硬化模型及残余应力分析 被引量:3
17
作者 符史仲 杨国来 《兵工学报》 EI CAS CSCD 北大核心 2018年第7期1277-1283,共7页
为准确地计算自紧身管强度及疲劳寿命,建立一种能反映其非线性应力与应变关系和包辛格效应等性能的材料本构模型,用以提高残余应力计算精度。基于非线性随动硬化模型,建立一种适用于表征自紧身管力学性能的非线性混合硬化模型,通过数值... 为准确地计算自紧身管强度及疲劳寿命,建立一种能反映其非线性应力与应变关系和包辛格效应等性能的材料本构模型,用以提高残余应力计算精度。基于非线性随动硬化模型,建立一种适用于表征自紧身管力学性能的非线性混合硬化模型,通过数值计算可获得残余应力分布情况;为提高数值计算的收敛速度,结合所建立的材料本构模型和各参量间的弹塑性关系,推导了与本构模型密切相关的一致切线刚度矩阵;为验证该本构模型的正确性,综合运用拉压试验和优化算法确定材料参数,进行了自紧身管残余应力有限元数值计算及分析。结果表明:数值计算的残余应力分布曲线与试验数据基本吻合;建立的炮钢本构关系模型能真实反映自紧厚壁圆筒的残余应力分布情况。 展开更多
关键词 身管 自紧厚壁圆筒 残余应力 本构模型 一致切线刚度矩阵 参数优化
下载PDF
Optimizing Winding Angles of Reinforced Thermoplastic Pipes Based on Progressive Failure Criterion 被引量:2
18
作者 WANG Yangyang LOU Min +2 位作者 ZENG Xin DONG Wenyi WANG Sen 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第5期1067-1078,共12页
This paper examines a scheme to optimize the multiple winding angles of reinforced thermoplastic pipes(RTPs)under internal and external pressures.To consider the nonlinear mechanical behavior of the material under cha... This paper examines a scheme to optimize the multiple winding angles of reinforced thermoplastic pipes(RTPs)under internal and external pressures.To consider the nonlinear mechanical behavior of the material under changes of winding angle due to deformation,we use three-dimensional(3D)thick-walled cylinder theory with the 3D Hashin failure criterion and theory of the evolution of damage to composite materials,to formulate a model that analyzes the progressive failure of RTPs.The accuracy of the model was verified by experiments.A model to optimize the multiple winding angles of the RTPs was then established using the model for progressive failure analysis and a multi-island genetic algorithm.The optimal scheme for winding angles of RTPs capable of withstanding the maximum internal/external pressure was obtained.The simulation results showed that the ply number of the reinforced layer has a prominent nonlinear effect on the internal and external pressure capacity of the RTPs.Compared with RTPs with a single angle of±55°,the multiple winding angle overlay scheme based on the multi-angle optimization model improved the internal and external pressure capacity of the RTPs,and the improvement in the external pressure capacity was significantly better than the internal pressure carrying capacity. 展开更多
关键词 reinforced thermoplastic pipes 3D thick-walled cylinder theory multi-island genetic algorithm pressure capacity
下载PDF
Theoretical and numerical investigations on the headspace of cartridge cases considering axial deformation and movement
19
作者 Song Cai Chen-lei Huang +2 位作者 Kun Liu Zhong-xin Li Zhi-lin Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第1期88-95,共8页
The cartridge case headspace is the axial clearance between the cartridge and bolt of an automatic weapon,and influences the reliability and security of the weapon.Accordingly,theoretical and numerical studies were co... The cartridge case headspace is the axial clearance between the cartridge and bolt of an automatic weapon,and influences the reliability and security of the weapon.Accordingly,theoretical and numerical studies were conducted to analyze the dynamic response of cartridge cases during internal impact considering the initial radial clearances between the cartridge case and chamber.A theoretical model was proposed to predict the cartridge case headspace considering both the deformation and movement of the cartridge case and confirmed by the results of nonlinear finite element simulations.The differences between the results of the conventional static model and the dynamic model were then comprehensively evaluated.The effects of the angle between the cartridge and chamber,the cartridge case material,and the intermal impact pressure on the predicted headspace value were also analyzed.The dynamic response of the cartridge case predicted by the dynamic model was more accurate than that predicted by the conventional static model.The internal impact pressure,pressure change rate,and cartridge material were all found to affect the predicted headspace. 展开更多
关键词 Cartridge case HEADSPACE RADIAL CLEARANCE thick-walled cylinder Dynamic response
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部