A conventional non-computerized numerical control (CNC) machine is updated by mounting a six degree-of-free (DOF) parallel mechanism on it, thus obtaining a new CNC one. The structure of this CNC milling machine i...A conventional non-computerized numerical control (CNC) machine is updated by mounting a six degree-of-free (DOF) parallel mechanism on it, thus obtaining a new CNC one. The structure of this CNC milling machine is introduced, and the workpiece locating system and the post processing system of the cutter location (CL) data file are analyzed. The new machine has advantages of low costs, simple structure, good rigidity, and high precision. It is easy to be transformed and used to process the workpiece with a complex surface.展开更多
Modals of the machine/tool and machine/part system are the principal factors affecting the stability of a milling process. Based on the modeling of chatter stability of milling process,the influence of modal parameter...Modals of the machine/tool and machine/part system are the principal factors affecting the stability of a milling process. Based on the modeling of chatter stability of milling process,the influence of modal parameters on chatter stability lobes independently or jointly has been analyzed by simulation. Peak-to-valley specific value,lobe coefficient and the corresponding calculation formula have been put forward. General laws and steps of modal simplification for multimodality system have been summarized.展开更多
Fine-grained BaTiO3-based X7R ceramic materials were prepared and the effects of milling process on the core-shell structures and dielectric properties were investigated using scanning electron microscope, transmissio...Fine-grained BaTiO3-based X7R ceramic materials were prepared and the effects of milling process on the core-shell structures and dielectric properties were investigated using scanning electron microscope, transmission electron microscope, and energy dispersive spectroscopy (EDS). As the milling time extends, the dielectric constant of the ceramics increases, whereas the temperature coefficient of capacitance at 125℃ drops quickly. The changes in dielectric properties are considered relevant to the microstructure evolution caused by the milling process. Defects on the surface of BaTiO3 particles increase because of the effects of milling process, which will make it easier for additives to diffuse into the interior grains. As the milling time increases, the shell region gets thicker and the core region gets smaller; however, EDS results show that the chemical inhomogeneity between grain core and grain shell becomes weaker.展开更多
Fermentation substrates of rice with different milling degrees(MDs) were prepared and fermented with human feces to compare their fermentation properties and effects on gut microbiota.MD 0s,MD 5s and MD 60s represente...Fermentation substrates of rice with different milling degrees(MDs) were prepared and fermented with human feces to compare their fermentation properties and effects on gut microbiota.MD 0s,MD 5s and MD 60s represented brown rice,moderately-milled rice and white rice,respectively.After in vitro fermentation,the MD 5s group showed higher starch utilization,compared with the MD 0s and 60s groups evaluated by Fourier transform infrared spectrometer,and confocal laser scanning microscope.Effects of fermentation substrates of rice with different MDs on gut microbiota were evaluated by 16S rDNA sequencing.All the sample groups reduced the pH and produced short-chain fatty acids(SCFAs) and branched-chain fatty acids.The MD 5s group exhibited higher α-diversity than the MD 0s and 60s groups.Abundances of Phascolarctobacterium,Blautia and norank_f_Ruminococcaceae were higher in the MD 0s and 5s groups,compared with the MD 60s group.These bacteria were also positively correlated with the SCFAs production via Spearman correlation analysis.In vitro culture assay revealed that fermentation substrates of MD 0s and 5s promoted the growth of two probiotics(Akkermansia muciniphila and Bifidobacterium adolescentis).Our results showed that moderate milling might be an appropriate way to produce rice products with richer nutrients and better fermentation properties.展开更多
Elucidating the effect of growth periods on the quality of calcium sulfate whiskers(CSWs)prepared from calcium sulfate dihydrate(DH)is imperative.Herein,crystal seeds and whiskers were prepared from DH in a water–gly...Elucidating the effect of growth periods on the quality of calcium sulfate whiskers(CSWs)prepared from calcium sulfate dihydrate(DH)is imperative.Herein,crystal seeds and whiskers were prepared from DH in a water–glycerol system.Longer whiskers were obtained from crystal seeds prepared via hydration of DH for 30 s than via ball milling for 5 min followed by hydration for 20 s.The attachment of cetyltrimethyl ammonium bromide and glycerol additives to the whisker tops promoted whisker growth.The whisker sponges exhibited good thermal barrier properties and compression cycle stability.展开更多
Cu-15%Cr composite powders were produced from elemental powders by mechanical milling technique. The structures, properties and thermal stability of the composite powders were characterized by scanning and transmissio...Cu-15%Cr composite powders were produced from elemental powders by mechanical milling technique. The structures, properties and thermal stability of the composite powders were characterized by scanning and transmission electron microscopy (SEM and TEM, respectively), electron probe microanalysis(EPMA), X-ray diffractometry and microhardness testing. The results show that powders are first flattened into thin discs at the initial stage of milling and then evolved into spheroid on further milling. Lamellar structure in powders is produced after intermediate milling. The Cr laminas degenerate into particles uniformizing in Cu matrix with excessive milling. The microhardness values and internal strain sharply increase with increasing milling time. Nano-sized Cu grains were found by TEM analysis. The microstructural observations suggested that the composite powders have high thermal stability and both spherodisation and thermal grooving contribute to the instability of Cr展开更多
The profit margin in the flour milling industry is quite narrow,so high-quality raw materials and efficiency of milling operations are crucial for every company. Many flour mills,especially those which import wheat fr...The profit margin in the flour milling industry is quite narrow,so high-quality raw materials and efficiency of milling operations are crucial for every company. Many flour mills,especially those which import wheat from other countries and have limited storage space for the different varieties or classes of wheat,can not afford to buy low quality wheat. Consequently,a mathematical model which can test the impact and interactions of raw materials,in technical point of view,would be a useful decision-making tool for the milling industry. A flour miller tests wheat for physical and chemical characteristics,cleanness and soundness. The miller also performs experimental milling,if available,to have some idea how the given wheat will behave during commercial milling. Based on these test results,the miller can only guess the commercial milling results such as flour yields and flour ash and protein contents. Thus,the objective of this study was to develop empirical equations to estimate commercial milling results,using the physical,chemical and experimental milling data of the given wheat blend and also,additionally,flour ash and protein specifications of the end-user. This was done by using the actual commercial milling procedures and their wheat physical,chemical,experimental milling data,and other vital data. Data were collected from a commercial mill located in East Asia that had four production lines and used wheat blend combinations from five different wheat classes,i.e. Hard Red Winter (HRW),Dark Northern Spring (DNS),Soft White (SW),Australian Soft (AS),and Australian Standard White (ASW) wheat to produce over 40 different products. The wheat physical and chemical characteristics included test weight,thousand kernel weight,ash and protein contents. The experimental milling data were straight-grade and patent flour yields,along with patent flour ash and protein contents from a Buhler experimental mill. The commercial milling results included the flour yields of patent,first clear,and second clear flours,as well as the ash and protein contents of commercial patent flours. Using multiple linear regression procedures,we have developed empirical equations to be able to estimate the commercial patent flour yields with R2 values above 0.90 for all four production lines,and commercial first clear flour yields with R2 values ranging 0.76 to 0.98,and the commercial patent flour protein contents with R2 values of 0.89 to 0.92. However,the yields of commercial second clear flours and the commercial patent flour ash contents were not able to be estimated with high coefficients of determination (R2 values). We recommend that the empirical equations for estimating commercial milling parameters should be derived using data from each individual flour milling company,for each production line of a given mill,and furthermore,tailored to specific products at a given ash and/or protein contents desired by end-users.展开更多
Considering the deficiency in milling process parameters selection, based on the modelling of dynamic milling force and the deduction of chatter stability limits, the chatter stability lobes simulation program for mil...Considering the deficiency in milling process parameters selection, based on the modelling of dynamic milling force and the deduction of chatter stability limits, the chatter stability lobes simulation program for milling is developed with MAT- LAB. The simulation optimization application software of dynamics was designed using engineering simulation software Visio Basic. The chatter stability lobes for milling, which can be used as an instruction guide for the selection of process parameters, are simulated with frequency response functions (FRFs) gained by hammer test. The validation and accuracy of the simulation algorithm are verified by experiments. The simulation method has been used in a factory with an excellent application effect.展开更多
Durning the design process of hydrostatic rotary worktable,the processing and assembly tolerance,(the offset of worktable and the gap of the oil film’s thickness)is ignored.But it will cause that the real bearing o...Durning the design process of hydrostatic rotary worktable,the processing and assembly tolerance,(the offset of worktable and the gap of the oil film’s thickness)is ignored.But it will cause that the real bearing of oil pocket deviates from the initial design value,and then the performance of rotary worktable will be reduced significantly.Up to now,no effort is found toward the research of influence of the processing and assembly tolerance on the performance of the rotary worktable.So the hydrostatic oil film is assumed as the elastomer in this paper,and then the bearing capacity of the oil pocket is studied with and without the mass offset of the worktable by taking an expression between the bearing capacity and the oil film’s thickness of the oil pocket as the deform compatibility equation.The influence of the processing tolerance of the oil sealing belt’s gap on the bearing capacity of the oil pocket is analyzed.In the light of the liquid hydrostatic worktable of Gantry Moving Milling Center using on the scene,the oil pocket’s pressure of the worktable is tested using Rotary Worktable Test System under the circumstance of the mass offset of the worktable and the gap tolerance of the oil sealing belt,and then the equivalent offset of worktable,the average pressure of the oil pocket and the actual thickness of the oil film are analyzed respectively.The test results show that the bearing capacity component of the oil pocket caused by G is consistent,and the component caused by M is relative to the position of the oil pocket.When the oil sealing belt’s gap is larger than the theoretical value,the bearing capacity of the oil pocket is smaller than the others;whereas the bearing capacity of the oil pocket is larger than the others.The maximum and minimum equivalent offsets are 0.256 4 mm and 0.047 5 mm,respectively,and the average oil pocket pressure varies from 0.345 MPa to 0.460 MPa,the maximum and minimum value of the actual oil film thickness are 109.976?m(No.7 oil pocket)and 93.467?m(No.10 oil pocket),respectively.The research results can be used to detect the offset of the worktable and the actual thickness of the oil film under processing and assembly tolerance,and provides a basis way for detecting the processing and assembly tolerance of rotary worktable signing reasonably of Gantry Moving Milling Center.展开更多
The problem of chatter vibration is associated with adverse consequences that often lead to tool impairment and poor surface finished in a workpiece, and thus, controlling or suppressing chatter vibrations is of great...The problem of chatter vibration is associated with adverse consequences that often lead to tool impairment and poor surface finished in a workpiece, and thus, controlling or suppressing chatter vibrations is of great significance to improve machining quality. In this paper, a workpiece and an actuator dynamics are considered in modeling and controller design. A proportional-integral controller(PI) is presented to control and actively damp the chatter vibration of a workpiece in the milling process. The controller is chosen on the basis of its highly stable output and a smaller amount of steady-state error. The controller is realized using analog operational amplifier circuit. The work has contributed to planning a novel approach that addresses the problem of chatter vibration in spite of technical hitches in modeling and controller design. The method can also lead to considerable reduction in vibrations and can be beneficial in industries in term of cost reduction and energy saving. The application of this method is verified using active damping device actuator(ADD) in the milling of steel.展开更多
The material removal rate and required work- piece surface quality of thin-walled structure milling are greatly limited due to its severe vibration, which is directly associated with the dynamic characteristics of the...The material removal rate and required work- piece surface quality of thin-walled structure milling are greatly limited due to its severe vibration, which is directly associated with the dynamic characteristics of the system. Therefore, the suppression of vibration is an unavoidable problem during milling. A novel partial surface damping method is proposed to modify the mode of the thin walled cantilever plate and to suppress vibration during milling. Based on classical plate theory, the design criterion is analyzed and configuration of the partial surface damper is introduced, in which viscoelastic plate and constraining plate are attached to the surface of the plate to increase the system's natural frequency and loss factor. In order to obtain the energy expression of the cutting system, the Ritz method is used to describe the unknown displacements. Then, with Lagrange's equation, the natural frequency and loss factor are calculated. In addition, the plate is divided into a finite number of square elements, and the regulation of treated position is studied based on theoretic and experimental analysis. The milling tests are conducted to verify its damping performance and the experimentalresults show that with treatment of partial surface damper, the deformation of the hare plate is reduced from 0.27 mm to 0.1 mm, while the vibration amplitude of the bare plate is reduced from 0.08 mm to 0.01 mm. The proposed research provides the instruction to design partial surface damper.展开更多
Based on analyzing various factors influencing milled surface topography, firstly, a generalized model for milled surface topography is proposed. Secondly, using the principles of transformation matrix and vector oper...Based on analyzing various factors influencing milled surface topography, firstly, a generalized model for milled surface topography is proposed. Secondly, using the principles of transformation matrix and vector operation, the trajectory equation of cutting edge relative to workpiece is derived. Then, a three dimensional topography simulation algorithm is constructed through dividing the workpiece into regular grids. Finally, taking the peripheral milling process as an example, the generalized model is simplified, and the corresponding simulation examples are given. The results indicate that it is very efficient for the generalized model to be used to analyze and simulate the peripherally milled surface topography.展开更多
In this study, a powder mixture with an Al/TiO2 molar ratio of 10/3 was used to form an r-Al2Ti intermetallic matrix composite (IMC) reinforced with α-Al2O3 ceramic by a novel milling technique, called discontinuou...In this study, a powder mixture with an Al/TiO2 molar ratio of 10/3 was used to form an r-Al2Ti intermetallic matrix composite (IMC) reinforced with α-Al2O3 ceramic by a novel milling technique, called discontinuous mechanical milling (DMM) instead of milling and ignition of the produced thermite. The results of energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) of samples with varying milling time indicate that this fabrication process requires considerable mechanical energy. It is shown that Al2Ti-α-Al2O3 IMC with small grain size was produced by DMM after 15 h of ball milling. Peaks for γ-TLA1 as well as Al2Ti and Al2O3 are observed in XRD patterns after DMM followed by heat treatment. The microhardness of the DMM-treated composite produced after heat treatment was higher than Hv 700.展开更多
A novel technique was developed for the preparation of Cu-15 wt pct Cr composite with high strength and conductivity. The composite powders with refined microstructure and curly lamellae strengthening phase was first ...A novel technique was developed for the preparation of Cu-15 wt pct Cr composite with high strength and conductivity. The composite powders with refined microstructure and curly lamellae strengthening phase was first prepared by mechanical milling in favorite milling time and then were hot hydrostatic extruded after pre-densification with sintering or hot pressing. It was shown that the extrusion densified the composite powders well and at the same time the chaos curled strengthening phase was aligned into lines and further deformed as strengthening ribbons. The deformation processed Cu-15 wt pct Cr composite prepared by this technique is of superior conductivity, strength and thermal stability.展开更多
Based on microscope and image processing, a new method of auto tool setting for micro milling was presented. Firstly, a realtime image of tool setting area was obtained by microscope and CCD camera, then image process...Based on microscope and image processing, a new method of auto tool setting for micro milling was presented. Firstly, a realtime image of tool setting area was obtained by microscope and CCD camera, then image processing was carried out on this image and the gap between the tool and workpiece was calculated. The gap measurement was sent to motion controlling card to make the tool approach to the surface of workpiece. These steps were repeated until the gap is zero, which means that tool setting was finished. Moreover, a reliability verification test was conducted. Results indicated that the precision of tool setting is satisfactory.展开更多
The aramid fiber-reinforced composites(AFRC)can increase the durability of corresponding applications such as aerospace,automobile and other large structural parts,due to the improvement in hardness,heat build-up,wear...The aramid fiber-reinforced composites(AFRC)can increase the durability of corresponding applications such as aerospace,automobile and other large structural parts,due to the improvement in hardness,heat build-up,wear properties and green environmental protection.However,because of its complex multiphase structure and unique heterogeneity and anisotropy,the poor compression fatigue resistance and the incident surface fibrillation are inevitable.To improve the assembly precision of AFRC,mechanical processing is necessary to meet the dimensional accuracy.This paper focuses on the influence of contour milling parameters on delamination defects during milling of AFRC laminates.A series of milling experiments are conducted and two different kinds of delamination defects including tearing delamination and uncut-off delamination are investigated.A computing method and model based on brittle fracture for the two different types of delamination are established.The results can be used for explaining the mechanism and regularity of delamination defects.The control strategy of delamination defects and evaluation method of finished surface integrity are further discussed.The results are meaningful to optimize cutting parameters,and provide a clear understanding of surface defects control.展开更多
文摘A conventional non-computerized numerical control (CNC) machine is updated by mounting a six degree-of-free (DOF) parallel mechanism on it, thus obtaining a new CNC one. The structure of this CNC milling machine is introduced, and the workpiece locating system and the post processing system of the cutter location (CL) data file are analyzed. The new machine has advantages of low costs, simple structure, good rigidity, and high precision. It is easy to be transformed and used to process the workpiece with a complex surface.
基金Supported by the Fundamental Research Project of COSTI ND(K1203020507)
文摘Modals of the machine/tool and machine/part system are the principal factors affecting the stability of a milling process. Based on the modeling of chatter stability of milling process,the influence of modal parameters on chatter stability lobes independently or jointly has been analyzed by simulation. Peak-to-valley specific value,lobe coefficient and the corresponding calculation formula have been put forward. General laws and steps of modal simplification for multimodality system have been summarized.
基金supported by the National Science fund for Distinguished Young Scholars (No.50625204)the National Natural Science Foundation of China (Science Fund for Creative Research Groups)(No.50621201)+1 种基金the Major State Basic Research Development Program of China (No.2009CB623301)the National High-Tech Research and Development Program of China (No.2006AA03Z0428), and Samsung Electro-Mechanics Co., Ltd.
文摘Fine-grained BaTiO3-based X7R ceramic materials were prepared and the effects of milling process on the core-shell structures and dielectric properties were investigated using scanning electron microscope, transmission electron microscope, and energy dispersive spectroscopy (EDS). As the milling time extends, the dielectric constant of the ceramics increases, whereas the temperature coefficient of capacitance at 125℃ drops quickly. The changes in dielectric properties are considered relevant to the microstructure evolution caused by the milling process. Defects on the surface of BaTiO3 particles increase because of the effects of milling process, which will make it easier for additives to diffuse into the interior grains. As the milling time increases, the shell region gets thicker and the core region gets smaller; however, EDS results show that the chemical inhomogeneity between grain core and grain shell becomes weaker.
基金supported by the National Natural Science Foundation of China (32202051)the Shanghai Sailing Program (21YF1431800, 20YF1433400)+1 种基金Shanghai Agriculture Applied Technology Development Program, China (2021-02-08-0012-F00780 )the National Key R&D Program of China (2022YFF1100104, 2023YFF1103404)。
文摘Fermentation substrates of rice with different milling degrees(MDs) were prepared and fermented with human feces to compare their fermentation properties and effects on gut microbiota.MD 0s,MD 5s and MD 60s represented brown rice,moderately-milled rice and white rice,respectively.After in vitro fermentation,the MD 5s group showed higher starch utilization,compared with the MD 0s and 60s groups evaluated by Fourier transform infrared spectrometer,and confocal laser scanning microscope.Effects of fermentation substrates of rice with different MDs on gut microbiota were evaluated by 16S rDNA sequencing.All the sample groups reduced the pH and produced short-chain fatty acids(SCFAs) and branched-chain fatty acids.The MD 5s group exhibited higher α-diversity than the MD 0s and 60s groups.Abundances of Phascolarctobacterium,Blautia and norank_f_Ruminococcaceae were higher in the MD 0s and 5s groups,compared with the MD 60s group.These bacteria were also positively correlated with the SCFAs production via Spearman correlation analysis.In vitro culture assay revealed that fermentation substrates of MD 0s and 5s promoted the growth of two probiotics(Akkermansia muciniphila and Bifidobacterium adolescentis).Our results showed that moderate milling might be an appropriate way to produce rice products with richer nutrients and better fermentation properties.
基金supported by the Degradable Plastics Engineering Research Center of Yunnan Provincial Education Department(KKPU202205001).
文摘Elucidating the effect of growth periods on the quality of calcium sulfate whiskers(CSWs)prepared from calcium sulfate dihydrate(DH)is imperative.Herein,crystal seeds and whiskers were prepared from DH in a water–glycerol system.Longer whiskers were obtained from crystal seeds prepared via hydration of DH for 30 s than via ball milling for 5 min followed by hydration for 20 s.The attachment of cetyltrimethyl ammonium bromide and glycerol additives to the whisker tops promoted whisker growth.The whisker sponges exhibited good thermal barrier properties and compression cycle stability.
文摘Cu-15%Cr composite powders were produced from elemental powders by mechanical milling technique. The structures, properties and thermal stability of the composite powders were characterized by scanning and transmission electron microscopy (SEM and TEM, respectively), electron probe microanalysis(EPMA), X-ray diffractometry and microhardness testing. The results show that powders are first flattened into thin discs at the initial stage of milling and then evolved into spheroid on further milling. Lamellar structure in powders is produced after intermediate milling. The Cr laminas degenerate into particles uniformizing in Cu matrix with excessive milling. The microhardness values and internal strain sharply increase with increasing milling time. Nano-sized Cu grains were found by TEM analysis. The microstructural observations suggested that the composite powders have high thermal stability and both spherodisation and thermal grooving contribute to the instability of Cr
文摘The profit margin in the flour milling industry is quite narrow,so high-quality raw materials and efficiency of milling operations are crucial for every company. Many flour mills,especially those which import wheat from other countries and have limited storage space for the different varieties or classes of wheat,can not afford to buy low quality wheat. Consequently,a mathematical model which can test the impact and interactions of raw materials,in technical point of view,would be a useful decision-making tool for the milling industry. A flour miller tests wheat for physical and chemical characteristics,cleanness and soundness. The miller also performs experimental milling,if available,to have some idea how the given wheat will behave during commercial milling. Based on these test results,the miller can only guess the commercial milling results such as flour yields and flour ash and protein contents. Thus,the objective of this study was to develop empirical equations to estimate commercial milling results,using the physical,chemical and experimental milling data of the given wheat blend and also,additionally,flour ash and protein specifications of the end-user. This was done by using the actual commercial milling procedures and their wheat physical,chemical,experimental milling data,and other vital data. Data were collected from a commercial mill located in East Asia that had four production lines and used wheat blend combinations from five different wheat classes,i.e. Hard Red Winter (HRW),Dark Northern Spring (DNS),Soft White (SW),Australian Soft (AS),and Australian Standard White (ASW) wheat to produce over 40 different products. The wheat physical and chemical characteristics included test weight,thousand kernel weight,ash and protein contents. The experimental milling data were straight-grade and patent flour yields,along with patent flour ash and protein contents from a Buhler experimental mill. The commercial milling results included the flour yields of patent,first clear,and second clear flours,as well as the ash and protein contents of commercial patent flours. Using multiple linear regression procedures,we have developed empirical equations to be able to estimate the commercial patent flour yields with R2 values above 0.90 for all four production lines,and commercial first clear flour yields with R2 values ranging 0.76 to 0.98,and the commercial patent flour protein contents with R2 values of 0.89 to 0.92. However,the yields of commercial second clear flours and the commercial patent flour ash contents were not able to be estimated with high coefficients of determination (R2 values). We recommend that the empirical equations for estimating commercial milling parameters should be derived using data from each individual flour milling company,for each production line of a given mill,and furthermore,tailored to specific products at a given ash and/or protein contents desired by end-users.
基金Tianjin Municipal Association of Higher Vocational&Technical Education Projects(No.XIV412)
文摘Considering the deficiency in milling process parameters selection, based on the modelling of dynamic milling force and the deduction of chatter stability limits, the chatter stability lobes simulation program for milling is developed with MAT- LAB. The simulation optimization application software of dynamics was designed using engineering simulation software Visio Basic. The chatter stability lobes for milling, which can be used as an instruction guide for the selection of process parameters, are simulated with frequency response functions (FRFs) gained by hammer test. The validation and accuracy of the simulation algorithm are verified by experiments. The simulation method has been used in a factory with an excellent application effect.
基金Supported by National Natural Science Foundation of China(Grant No.51075348)Hebei Provincial Natural Science Foundation of China(Grant No.E2011203151)Research Fund for Doctoral Program of Higher Education of China(Grant No.20101333110002)
文摘Durning the design process of hydrostatic rotary worktable,the processing and assembly tolerance,(the offset of worktable and the gap of the oil film’s thickness)is ignored.But it will cause that the real bearing of oil pocket deviates from the initial design value,and then the performance of rotary worktable will be reduced significantly.Up to now,no effort is found toward the research of influence of the processing and assembly tolerance on the performance of the rotary worktable.So the hydrostatic oil film is assumed as the elastomer in this paper,and then the bearing capacity of the oil pocket is studied with and without the mass offset of the worktable by taking an expression between the bearing capacity and the oil film’s thickness of the oil pocket as the deform compatibility equation.The influence of the processing tolerance of the oil sealing belt’s gap on the bearing capacity of the oil pocket is analyzed.In the light of the liquid hydrostatic worktable of Gantry Moving Milling Center using on the scene,the oil pocket’s pressure of the worktable is tested using Rotary Worktable Test System under the circumstance of the mass offset of the worktable and the gap tolerance of the oil sealing belt,and then the equivalent offset of worktable,the average pressure of the oil pocket and the actual thickness of the oil film are analyzed respectively.The test results show that the bearing capacity component of the oil pocket caused by G is consistent,and the component caused by M is relative to the position of the oil pocket.When the oil sealing belt’s gap is larger than the theoretical value,the bearing capacity of the oil pocket is smaller than the others;whereas the bearing capacity of the oil pocket is larger than the others.The maximum and minimum equivalent offsets are 0.256 4 mm and 0.047 5 mm,respectively,and the average oil pocket pressure varies from 0.345 MPa to 0.460 MPa,the maximum and minimum value of the actual oil film thickness are 109.976?m(No.7 oil pocket)and 93.467?m(No.10 oil pocket),respectively.The research results can be used to detect the offset of the worktable and the actual thickness of the oil film under processing and assembly tolerance,and provides a basis way for detecting the processing and assembly tolerance of rotary worktable signing reasonably of Gantry Moving Milling Center.
基金supported by National Natural Science Foundation of China(Grant No.51675440)Fundamental Research Funds for the Central Universities of China(Grant no.3102018gxc025)
文摘The problem of chatter vibration is associated with adverse consequences that often lead to tool impairment and poor surface finished in a workpiece, and thus, controlling or suppressing chatter vibrations is of great significance to improve machining quality. In this paper, a workpiece and an actuator dynamics are considered in modeling and controller design. A proportional-integral controller(PI) is presented to control and actively damp the chatter vibration of a workpiece in the milling process. The controller is chosen on the basis of its highly stable output and a smaller amount of steady-state error. The controller is realized using analog operational amplifier circuit. The work has contributed to planning a novel approach that addresses the problem of chatter vibration in spite of technical hitches in modeling and controller design. The method can also lead to considerable reduction in vibrations and can be beneficial in industries in term of cost reduction and energy saving. The application of this method is verified using active damping device actuator(ADD) in the milling of steel.
基金Supported by National Natural Science Foundation of China(Grant No.51575319)Young Scholars Program of Shandong University(Grant No.2015WLJH31)+1 种基金Major National Science and Technology Project of China(Grant No.2014ZX04012-014)Tai Shan Scholar Foundation,China(Grant No.TS20130922)
文摘The material removal rate and required work- piece surface quality of thin-walled structure milling are greatly limited due to its severe vibration, which is directly associated with the dynamic characteristics of the system. Therefore, the suppression of vibration is an unavoidable problem during milling. A novel partial surface damping method is proposed to modify the mode of the thin walled cantilever plate and to suppress vibration during milling. Based on classical plate theory, the design criterion is analyzed and configuration of the partial surface damper is introduced, in which viscoelastic plate and constraining plate are attached to the surface of the plate to increase the system's natural frequency and loss factor. In order to obtain the energy expression of the cutting system, the Ritz method is used to describe the unknown displacements. Then, with Lagrange's equation, the natural frequency and loss factor are calculated. In addition, the plate is divided into a finite number of square elements, and the regulation of treated position is studied based on theoretic and experimental analysis. The milling tests are conducted to verify its damping performance and the experimentalresults show that with treatment of partial surface damper, the deformation of the hare plate is reduced from 0.27 mm to 0.1 mm, while the vibration amplitude of the bare plate is reduced from 0.08 mm to 0.01 mm. The proposed research provides the instruction to design partial surface damper.
文摘Based on analyzing various factors influencing milled surface topography, firstly, a generalized model for milled surface topography is proposed. Secondly, using the principles of transformation matrix and vector operation, the trajectory equation of cutting edge relative to workpiece is derived. Then, a three dimensional topography simulation algorithm is constructed through dividing the workpiece into regular grids. Finally, taking the peripheral milling process as an example, the generalized model is simplified, and the corresponding simulation examples are given. The results indicate that it is very efficient for the generalized model to be used to analyze and simulate the peripherally milled surface topography.
文摘In this study, a powder mixture with an Al/TiO2 molar ratio of 10/3 was used to form an r-Al2Ti intermetallic matrix composite (IMC) reinforced with α-Al2O3 ceramic by a novel milling technique, called discontinuous mechanical milling (DMM) instead of milling and ignition of the produced thermite. The results of energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) of samples with varying milling time indicate that this fabrication process requires considerable mechanical energy. It is shown that Al2Ti-α-Al2O3 IMC with small grain size was produced by DMM after 15 h of ball milling. Peaks for γ-TLA1 as well as Al2Ti and Al2O3 are observed in XRD patterns after DMM followed by heat treatment. The microhardness of the DMM-treated composite produced after heat treatment was higher than Hv 700.
文摘A novel technique was developed for the preparation of Cu-15 wt pct Cr composite with high strength and conductivity. The composite powders with refined microstructure and curly lamellae strengthening phase was first prepared by mechanical milling in favorite milling time and then were hot hydrostatic extruded after pre-densification with sintering or hot pressing. It was shown that the extrusion densified the composite powders well and at the same time the chaos curled strengthening phase was aligned into lines and further deformed as strengthening ribbons. The deformation processed Cu-15 wt pct Cr composite prepared by this technique is of superior conductivity, strength and thermal stability.
基金Supported by National Natural Science Foundation of China (No. 50935003)
文摘Based on microscope and image processing, a new method of auto tool setting for micro milling was presented. Firstly, a realtime image of tool setting area was obtained by microscope and CCD camera, then image processing was carried out on this image and the gap between the tool and workpiece was calculated. The gap measurement was sent to motion controlling card to make the tool approach to the surface of workpiece. These steps were repeated until the gap is zero, which means that tool setting was finished. Moreover, a reliability verification test was conducted. Results indicated that the precision of tool setting is satisfactory.
基金supported by the National Natural Science Foundation of China(No.51975334)Key R&D Project of Shandong Province(No.2019JMRH0407)the Fundamental Research Funds of Shandong University Grant。
文摘The aramid fiber-reinforced composites(AFRC)can increase the durability of corresponding applications such as aerospace,automobile and other large structural parts,due to the improvement in hardness,heat build-up,wear properties and green environmental protection.However,because of its complex multiphase structure and unique heterogeneity and anisotropy,the poor compression fatigue resistance and the incident surface fibrillation are inevitable.To improve the assembly precision of AFRC,mechanical processing is necessary to meet the dimensional accuracy.This paper focuses on the influence of contour milling parameters on delamination defects during milling of AFRC laminates.A series of milling experiments are conducted and two different kinds of delamination defects including tearing delamination and uncut-off delamination are investigated.A computing method and model based on brittle fracture for the two different types of delamination are established.The results can be used for explaining the mechanism and regularity of delamination defects.The control strategy of delamination defects and evaluation method of finished surface integrity are further discussed.The results are meaningful to optimize cutting parameters,and provide a clear understanding of surface defects control.