Autoinhibitory activity has been discovered in murine T lymphocyte leukemia models derived from 615 mice in our lab. It was designated 615 mice leukemia associated inhibitor (LAI-615) . To further confirm whether LAI ...Autoinhibitory activity has been discovered in murine T lymphocyte leukemia models derived from 615 mice in our lab. It was designated 615 mice leukemia associated inhibitor (LAI-615) . To further confirm whether LAI activity could be found in human leukemia, 6 ALL cases and 2 AML cases were examined. The results showed that 5/6 of ALL and 1/2 of AML cases had detectable LAI activity. The different sensitivities of LAI activity were also found between autologous bone marrow cells and human leukemic cell lines, which indicate that autoinhibitory activity might have individual specificity.展开更多
The stimulatory effect of lysophosphatidylcholine (lyso_PC) on ATP and ρ_nitrophenyl phosphate (PNPP) hydrolysis by the plasma membrane H +_ATPase from soybean (Glycine max (L.) Merr.) hypocotyls was studied. Re...The stimulatory effect of lysophosphatidylcholine (lyso_PC) on ATP and ρ_nitrophenyl phosphate (PNPP) hydrolysis by the plasma membrane H +_ATPase from soybean (Glycine max (L.) Merr.) hypocotyls was studied. Results showed that lyso_PC stimulated the hydrolysis of ATP; ATP hydrolysis was enhanced dramatically when lyso_PC was within 0-0.03%, and increased slightly when lyso_PC was higher than 0.03%. At the concentration of 0.03%, lyso_PC stimulated ATP hydrolysis by 80.5%. Kinetics analysis showed that V max increased from 0.46 μmol P i·mg -1 protein·min -1 to 0.87 μmol P i·mg -1 protein·min -1 while K m increased from 0.88 mmol/L to 1.15 mmol/L under lyso_PC treatment. The optimum pH of ATP hydrolysis was shifted from 6.5 to 7.0 . Moreover, it was found lyso_PC enhanced the inhibition of ATP hydrolysis by hydroxylamine. In the presence of 200 mmol/L hydroxylamine, ATP hydrolysis was inhibited by 74.4%, while it was inhibited by 84.4% when treated with lyso_PC. However, PNPP hydrolysis and the inhibitory effect of vanadate were not affected by lyso_PC. The above results indicated that the kinase domain might be an action site or regulatory region of the C_terminal autoinhibitory domain in the plant plasma membrane H +_ATPase.展开更多
文摘Autoinhibitory activity has been discovered in murine T lymphocyte leukemia models derived from 615 mice in our lab. It was designated 615 mice leukemia associated inhibitor (LAI-615) . To further confirm whether LAI activity could be found in human leukemia, 6 ALL cases and 2 AML cases were examined. The results showed that 5/6 of ALL and 1/2 of AML cases had detectable LAI activity. The different sensitivities of LAI activity were also found between autologous bone marrow cells and human leukemic cell lines, which indicate that autoinhibitory activity might have individual specificity.
文摘The stimulatory effect of lysophosphatidylcholine (lyso_PC) on ATP and ρ_nitrophenyl phosphate (PNPP) hydrolysis by the plasma membrane H +_ATPase from soybean (Glycine max (L.) Merr.) hypocotyls was studied. Results showed that lyso_PC stimulated the hydrolysis of ATP; ATP hydrolysis was enhanced dramatically when lyso_PC was within 0-0.03%, and increased slightly when lyso_PC was higher than 0.03%. At the concentration of 0.03%, lyso_PC stimulated ATP hydrolysis by 80.5%. Kinetics analysis showed that V max increased from 0.46 μmol P i·mg -1 protein·min -1 to 0.87 μmol P i·mg -1 protein·min -1 while K m increased from 0.88 mmol/L to 1.15 mmol/L under lyso_PC treatment. The optimum pH of ATP hydrolysis was shifted from 6.5 to 7.0 . Moreover, it was found lyso_PC enhanced the inhibition of ATP hydrolysis by hydroxylamine. In the presence of 200 mmol/L hydroxylamine, ATP hydrolysis was inhibited by 74.4%, while it was inhibited by 84.4% when treated with lyso_PC. However, PNPP hydrolysis and the inhibitory effect of vanadate were not affected by lyso_PC. The above results indicated that the kinase domain might be an action site or regulatory region of the C_terminal autoinhibitory domain in the plant plasma membrane H +_ATPase.