The highway capacity manual(HCM)provides a formula to calculate the heavy vehicle adjustment factor(fHV)as a function of passenger car equivalent factors for the heavy vehicle(ET).However,a significant drawback is tha...The highway capacity manual(HCM)provides a formula to calculate the heavy vehicle adjustment factor(fHV)as a function of passenger car equivalent factors for the heavy vehicle(ET).However,a significant drawback is that the methodology was established solely based on human-driven passenger cars(HDPC)and human-driven heavy vehicles(HDHV).Due to automated passenger cars(APCs),a new adjustment factor(fAV)might be expected.This study simulated traffic flows at different percentages of HDHVs and APCs to investigate the impacts of HDHVs and APCs on freeway capacity by analyzing their influence on fHV and fAV values.The simulation determined observed adjustment factors at different percentages of HDHVs and APCs(fobserved).The HCM formula was used to calculate(fHCM).Modifications to the HCM formula are proposed,and vehicle adjustment factors due to HDHVs and APCs were calculated(fproposed).Results showed that,in the presence of APCs,while fobserved and fHCM were statistically significantly different,fobserved and fproposed were statistically equal.Hence,this study recommends using the proposed formula when determining vehicle adjustment factors(fproposed)due to HDHVs and APCs in the traffic stream.展开更多
In the process of railway construction, because of the inconvenience ofgeological condition, water bursting and mud surging happen frequently, and the laterdeformation of support structure on the happening geology sec...In the process of railway construction, because of the inconvenience ofgeological condition, water bursting and mud surging happen frequently, and the laterdeformation of support structure on the happening geology section would threaten thenormal running of railway. The limit difference of deformation control value of thesupport structure section where geological accidents frequently happen, is small, andartificial half-automatic supervisory technology cannot get the health condition of tunnelin time, resulting many cars speed-down accidents due to deformation of supportstructure. Through design innovation, we introduce TGMIS in the later period ofYanzishan railway construction to quickly capture the deformation of support structure,the strain of lining concrete, the strain of steel frame, stress of surrounding soil, stress ofsurrounding water, strain of second lining steel bar and other situ data. Also we setobservation prism and measuring robot device in specific position inside tunnel, androbot laser locator laser spot is projected onto reflection target surface, by graphicprocessing algorithm, the receiver calculates the measured value and standard value ofthe 3D coordinates of the laser spot. Then the information is transmitted throughtransmitting device, transducer and USB-485 to computer to predict and evaluate thehealth condition of the support structure of the tunnel so as to provide safety warninginformation. Provide timely and reliable data for the operation company to avoid theoccurrence of vicious accidents.展开更多
The evolution of Industry 4.0 made it essential to adopt the Internet of Things(IoT)and Cloud Computing(CC)technologies to perform activities in the new age of manufacturing.These technologies enable collecting,storin...The evolution of Industry 4.0 made it essential to adopt the Internet of Things(IoT)and Cloud Computing(CC)technologies to perform activities in the new age of manufacturing.These technologies enable collecting,storing,and retrieving essential information from the manufacturing stage.Data collected at sites are shared with others where execution automatedly occurs.The obtained information must be validated at manufacturing to avoid undesirable data losses during the de-manufacturing process.However,information sharing from the assembly level at the manufacturing stage to disassembly at the product end-of-life state is a major concern.The current research validates the information optimally to offer a minimum set of activities to complete the disassembly process.An optimal disassembly sequence plan(DSP)can possess valid information to organize the necessary actions in manufacturing.However,finding an optimal DSP is complex because of its combinatorial nature.The genetic algorithm(GA)is a widely preferred artificial intelligence(AI)algorithm to obtain a near-optimal solution for the DSP problem.The converging nature at local optima is a limitation in the traditional GA.This study improvised the GA workability by integrating with the proposed priori crossover operator.An optimality function is defined to reduce disassembly effort by considering directional changes as parameters.The enhanced GA method is tested on a real-time product to evaluate the performance.The obtained results reveal that diversity control depends on the operators employed in the disassembly attributes.The proposed method’s solution can be stored in the cloud and shared through IoT devices for effective resource allocation and disassembly for maximum recovery of the product.The effectiveness of the proposed enhanced GA method is determined by making a comparative assessment with traditional GA and other AI methods at different population sizes.展开更多
在网络威胁呈爆发式增长的当下,随着业务模式数字化重塑与业务持续性增长,银行业面临因网络安全防线持续扩大所导致的安全设备冗杂、安全运营任务繁重、实战能力不足等问题.对银行业金融机构在安全运营中所面临的挑战进行分析,提出了融...在网络威胁呈爆发式增长的当下,随着业务模式数字化重塑与业务持续性增长,银行业面临因网络安全防线持续扩大所导致的安全设备冗杂、安全运营任务繁重、实战能力不足等问题.对银行业金融机构在安全运营中所面临的挑战进行分析,提出了融合平战一体化安全运营机制的银行业DAO(defence,ability and operation)数字化安全运营体系,重点研究纵深化防护基础、原子化能力中枢、数字化运营总台3层次架构,以及针对常态化、高强度、无间断防护目标的平战一体机制实施路径.展开更多
文摘The highway capacity manual(HCM)provides a formula to calculate the heavy vehicle adjustment factor(fHV)as a function of passenger car equivalent factors for the heavy vehicle(ET).However,a significant drawback is that the methodology was established solely based on human-driven passenger cars(HDPC)and human-driven heavy vehicles(HDHV).Due to automated passenger cars(APCs),a new adjustment factor(fAV)might be expected.This study simulated traffic flows at different percentages of HDHVs and APCs to investigate the impacts of HDHVs and APCs on freeway capacity by analyzing their influence on fHV and fAV values.The simulation determined observed adjustment factors at different percentages of HDHVs and APCs(fobserved).The HCM formula was used to calculate(fHCM).Modifications to the HCM formula are proposed,and vehicle adjustment factors due to HDHVs and APCs were calculated(fproposed).Results showed that,in the presence of APCs,while fobserved and fHCM were statistically significantly different,fobserved and fproposed were statistically equal.Hence,this study recommends using the proposed formula when determining vehicle adjustment factors(fproposed)due to HDHVs and APCs in the traffic stream.
文摘In the process of railway construction, because of the inconvenience ofgeological condition, water bursting and mud surging happen frequently, and the laterdeformation of support structure on the happening geology section would threaten thenormal running of railway. The limit difference of deformation control value of thesupport structure section where geological accidents frequently happen, is small, andartificial half-automatic supervisory technology cannot get the health condition of tunnelin time, resulting many cars speed-down accidents due to deformation of supportstructure. Through design innovation, we introduce TGMIS in the later period ofYanzishan railway construction to quickly capture the deformation of support structure,the strain of lining concrete, the strain of steel frame, stress of surrounding soil, stress ofsurrounding water, strain of second lining steel bar and other situ data. Also we setobservation prism and measuring robot device in specific position inside tunnel, androbot laser locator laser spot is projected onto reflection target surface, by graphicprocessing algorithm, the receiver calculates the measured value and standard value ofthe 3D coordinates of the laser spot. Then the information is transmitted throughtransmitting device, transducer and USB-485 to computer to predict and evaluate thehealth condition of the support structure of the tunnel so as to provide safety warninginformation. Provide timely and reliable data for the operation company to avoid theoccurrence of vicious accidents.
基金The authors are grateful to the Raytheon Chair for Systems Engineering for funding.
文摘The evolution of Industry 4.0 made it essential to adopt the Internet of Things(IoT)and Cloud Computing(CC)technologies to perform activities in the new age of manufacturing.These technologies enable collecting,storing,and retrieving essential information from the manufacturing stage.Data collected at sites are shared with others where execution automatedly occurs.The obtained information must be validated at manufacturing to avoid undesirable data losses during the de-manufacturing process.However,information sharing from the assembly level at the manufacturing stage to disassembly at the product end-of-life state is a major concern.The current research validates the information optimally to offer a minimum set of activities to complete the disassembly process.An optimal disassembly sequence plan(DSP)can possess valid information to organize the necessary actions in manufacturing.However,finding an optimal DSP is complex because of its combinatorial nature.The genetic algorithm(GA)is a widely preferred artificial intelligence(AI)algorithm to obtain a near-optimal solution for the DSP problem.The converging nature at local optima is a limitation in the traditional GA.This study improvised the GA workability by integrating with the proposed priori crossover operator.An optimality function is defined to reduce disassembly effort by considering directional changes as parameters.The enhanced GA method is tested on a real-time product to evaluate the performance.The obtained results reveal that diversity control depends on the operators employed in the disassembly attributes.The proposed method’s solution can be stored in the cloud and shared through IoT devices for effective resource allocation and disassembly for maximum recovery of the product.The effectiveness of the proposed enhanced GA method is determined by making a comparative assessment with traditional GA and other AI methods at different population sizes.
文摘在网络威胁呈爆发式增长的当下,随着业务模式数字化重塑与业务持续性增长,银行业面临因网络安全防线持续扩大所导致的安全设备冗杂、安全运营任务繁重、实战能力不足等问题.对银行业金融机构在安全运营中所面临的挑战进行分析,提出了融合平战一体化安全运营机制的银行业DAO(defence,ability and operation)数字化安全运营体系,重点研究纵深化防护基础、原子化能力中枢、数字化运营总台3层次架构,以及针对常态化、高强度、无间断防护目标的平战一体机制实施路径.