期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于区间相容技术与GA的测试数据自动生成方法 被引量:1
1
作者 张毅坤 赵明 +1 位作者 张保卫 崔杜武 《西安理工大学学报》 CAS 2006年第4期350-354,共5页
针对测试数据自动生成完全依赖约束集求解问题(Constraint Solving Problem,CSP)进行求解会导致耗时较大甚至求解不出最终测试用例,以及采用动态GA算法又无法确定变量的最初论域空间,首次将基于CSP求解与GA的动态算法进行了有机结合,摒... 针对测试数据自动生成完全依赖约束集求解问题(Constraint Solving Problem,CSP)进行求解会导致耗时较大甚至求解不出最终测试用例,以及采用动态GA算法又无法确定变量的最初论域空间,首次将基于CSP求解与GA的动态算法进行了有机结合,摒弃了二者固有的缺陷,吸取了静态算法对变量论域空间削减速度快的优点。采用eBox区间相容削减标准,过滤变量的论域空间,并在经过削减的空间上采用GA搜索算法自动产生测试数据,应用常变量的逆向推导技术、表达式直接遗传等技术,大幅度地提高了测试数据的生成速度。 展开更多
关键词 测试数据自动生成 约束集求解问题 eBox相容 GA
下载PDF
A Genetic Approach to Analyze Algorithm Performance Based on the Worst-Case Instances 被引量:2
2
作者 So-Yeong Jeon Yong-Hyuk Kim 《Journal of Software Engineering and Applications》 2010年第8期767-775,共9页
Search-based software engineering has mainly dealt with automated test data generation by metaheuristic search techniques. Similarly, we try to generate the test data (i.e., problem instances) which show the worst cas... Search-based software engineering has mainly dealt with automated test data generation by metaheuristic search techniques. Similarly, we try to generate the test data (i.e., problem instances) which show the worst case of algorithms by such a technique. In this paper, in terms of non-functional testing, we re-define the worst case of some algorithms, respectively. By using genetic algorithms (GAs), we illustrate the strategies corresponding to each type of instances. We here adopt three problems for examples;the sorting problem, the 0/1 knapsack problem (0/1KP), and the travelling salesperson problem (TSP). In some algorithms solving these problems, we could find the worst-case instances successfully;the successfulness of the result is based on a statistical approach and comparison to the results by using the random testing. Our tried examples introduce informative guidelines to the use of genetic algorithms in generating the worst-case instance, which is defined in the aspect of algorithm performance. 展开更多
关键词 Search-Based Software Engineering automated test data generation Worst-Case Instance Algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部