This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeabi...This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications.展开更多
A systematic methodology for formulating,implementing,solving and verifying discrete adjoint of the compressible Reynolds-averaged Navier-Stokes(RANS) equations for aerodynamic design optimization on unstructured me...A systematic methodology for formulating,implementing,solving and verifying discrete adjoint of the compressible Reynolds-averaged Navier-Stokes(RANS) equations for aerodynamic design optimization on unstructured meshes is proposed.First,a general adjoint formulation is constructed for the entire optimization problem,including parameterization,mesh deformation,flow solution and computation of the objective function,which is followed by detailed formulations of matrix-vector products arising in the adjoint model.According to this formulation,procedural components of implementing the required matrix-vector products are generated by means of automatic differentiation(AD) in a structured and modular manner.Furthermore,a duality-preserving iterative algorithm is employed to solve flow adjoint equations arising in the adjoint model,ensuring identical convergence rates for the tangent and the adjoint models.A three-step strategy is adopted to verify the adjoint computation.The proposed method has several remarkable features:the use of AD techniques avoids tedious and error-prone manual derivation and programming;duality is strictly preserved so that consistent and highly accurate discrete sensitivities can be obtained;and comparable efficiency to hand-coded implementation can be achieved.Upon the current discrete adjoint method,a gradient-based optimization framework has been developed and applied to a drag reduction problem.展开更多
文摘This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘A systematic methodology for formulating,implementing,solving and verifying discrete adjoint of the compressible Reynolds-averaged Navier-Stokes(RANS) equations for aerodynamic design optimization on unstructured meshes is proposed.First,a general adjoint formulation is constructed for the entire optimization problem,including parameterization,mesh deformation,flow solution and computation of the objective function,which is followed by detailed formulations of matrix-vector products arising in the adjoint model.According to this formulation,procedural components of implementing the required matrix-vector products are generated by means of automatic differentiation(AD) in a structured and modular manner.Furthermore,a duality-preserving iterative algorithm is employed to solve flow adjoint equations arising in the adjoint model,ensuring identical convergence rates for the tangent and the adjoint models.A three-step strategy is adopted to verify the adjoint computation.The proposed method has several remarkable features:the use of AD techniques avoids tedious and error-prone manual derivation and programming;duality is strictly preserved so that consistent and highly accurate discrete sensitivities can be obtained;and comparable efficiency to hand-coded implementation can be achieved.Upon the current discrete adjoint method,a gradient-based optimization framework has been developed and applied to a drag reduction problem.