Electric vehicle charging identification and positioning is critically important to achieving automatic charging.In terms of the problem of automatic charging for electric vehicles,a dual recognition and positioning m...Electric vehicle charging identification and positioning is critically important to achieving automatic charging.In terms of the problem of automatic charging for electric vehicles,a dual recognition and positioning method based on deep learning is proposed.The method is divided into two parts:global recognition and localization and local recognition and localization.In the specific implementation process,the collected pictures of electric vehicle charging attitude are classified and labeled.It is trained with the improved YOLOv4 networkmodel and the corresponding detectionmodel is obtained.The contour of the electric vehicle is extracted by the BiSeNet semantic segmentation algorithm.The minimum external rectangle is used for positioning of the electric vehicle.Based on the location relationship between the charging port and the electric vehicle,the rough location information of the charging port is obtained.The automatic charging equipment moves to the vicinity of the charging port,and the camera near the charging gun collects pictures of the charging port.The model is detected by the Hough circle,the KM algorithmis used for featurematching,and the homography matrix is used to solve the attitude.The results show that the dual identification and location method based on the improved YOLOv4 algorithm proposed in this paper can accurately locate the charging port.The accuracy of the charging connection can reach 80%.It provides an effective way to solve the problems of automatic charging identification and positioning of electric vehicles and has strong engineering practical value.展开更多
Recently,there has been a huge increase in the usage of fuel resources for automobiles which is severely affecting the climate and causing global warming.The use of electric vehicle(EV)is an effective way to protect t...Recently,there has been a huge increase in the usage of fuel resources for automobiles which is severely affecting the climate and causing global warming.The use of electric vehicle(EV)is an effective way to protect the environment and reduce travel costs.However,the EV charging system has a single charging source,and the charging rate is limited.In this paper,an EV wireless charging system based on dual source power supply has been developed.It realizes intelligent switching between 12 V photovoltaic output and 220 V AC dual source power,and has wireless transmission function.Based on the proposed power supply architecture,the micro wireless charging model is built,which enables the EV model to store power and realize static and mobile control through the wireless induction charging system.展开更多
In this paper,an improved sag control strategy based on automatic SOC equalization is proposed to solve the problems of slow SOC equalization and excessive bus voltage fluctuation amplitude and offset caused by load a...In this paper,an improved sag control strategy based on automatic SOC equalization is proposed to solve the problems of slow SOC equalization and excessive bus voltage fluctuation amplitude and offset caused by load and PV power variations in a stand-alone DC microgrid.The strategy includes primary and secondary control.Among them,the primary control suppresses the DC microgrid voltage fluctuation through the I and II section control,and the secondary control aims to correct the P-U curve of the energy storage system and the PV system,thus reducing the steady-state bus voltage excursion.The simulation results demonstrate that the proposed control strategy effectively achieves SOC balancing and enhances the immunity of bus voltage.The proposed strategy improves the voltage fluctuation suppression ability by approximately 39.4%and 43.1%under the PV power and load power fluctuation conditions,respectively.Furthermore,the steady-state deviation of the bus voltage,△U_(dc) is only 0.01–0.1 V,ensuring stable operation of the DC microgrid in fluctuating power environments.展开更多
The widely adoption of Electric Vehicle (EV) has been identified as a major challenge for future development of smart grids. The ever increasing electric vehicle charging further increases the energy demand. This pape...The widely adoption of Electric Vehicle (EV) has been identified as a major challenge for future development of smart grids. The ever increasing electric vehicle charging further increases the energy demand. This paper reports the development of an Advanced Metering Infrastructure (AMI) as an effective tool to reshape the load profile of EV charging by adopting appropriate demand side management strategy. This paper presents a total solution for EV charging service platform (EVAMI) based on power line and internet communication. It must be stressed that the development of Third Party Customer Service Platform in this investigation facilitates a single bill to be issued to EV owners. Hence, EV owners understand their energy usage and thus may perform energy saving activity efficiently. Experiment and evaluation of the proposed system show that the throughput achieved is about 5 Mbps at 10 ms end to end delay in Power line Communication. By introducing two dimensional dynamic pricing and charging schedule, the proposed EVAMI successfully reduces 36% peak consumption and increases the “off peak” consumption by 54%. Therefore the EVAMI does not only reduce the peak consumption but also relocates the energy demand effectively.展开更多
[Objective] In order to better meet the requirement of crops on a more and more accurate water content under various planting environment of modern agri-culture, an automatic test system of soil water characteristic c...[Objective] In order to better meet the requirement of crops on a more and more accurate water content under various planting environment of modern agri-culture, an automatic test system of soil water characteristic curve was designed by combining the conceptions of soil moisture content and soil water potential. [Method] Electronic soil moisture tension meter was used to determine the real-time tension value of soil moisture in the tested container, and the electronic Weigh sensor was used to determine soil Weigh. Minusing method was used to calculate soil moisture content, based on which the soil water characteristic curve was plotted. [Result] Through the filed survey of 2 different kinds of soil in Jiangsu Province, the results were as fol ows: soil of different composition showed different trend in soil water characteristic curve that the soil water characteristic relation of the sandy soil in the old course of the Yel ow River in Xuzhou was Y=-0.000 2X3+0.027 7X2-1.644 5X+38.161, R2=0.991 9; while the soil water characteristic relation of the saline-alkali soil in Jinhai Farm of Dafeng was Y=-0.00 2X2-0.426X+39.905, R2=0.991 3. [Con-clusion] The automatic test system of soil water characteristic curve soil water char-acteristics curve could reflect soil moisture content and soil water potential, as wel as reflect the effectiveness of soil water to plant growth, providing basis for the sci-entific irrigation.展开更多
基金supported by Guangdong Province Key Research and Development Project(2019B090909001)National Natural Science Foundation of China(52175236)+1 种基金the Natural Science Foundation of China(Grant 51705268)China Postdoctoral Science Foundation Funded Project(Grant 2017M612191).
文摘Electric vehicle charging identification and positioning is critically important to achieving automatic charging.In terms of the problem of automatic charging for electric vehicles,a dual recognition and positioning method based on deep learning is proposed.The method is divided into two parts:global recognition and localization and local recognition and localization.In the specific implementation process,the collected pictures of electric vehicle charging attitude are classified and labeled.It is trained with the improved YOLOv4 networkmodel and the corresponding detectionmodel is obtained.The contour of the electric vehicle is extracted by the BiSeNet semantic segmentation algorithm.The minimum external rectangle is used for positioning of the electric vehicle.Based on the location relationship between the charging port and the electric vehicle,the rough location information of the charging port is obtained.The automatic charging equipment moves to the vicinity of the charging port,and the camera near the charging gun collects pictures of the charging port.The model is detected by the Hough circle,the KM algorithmis used for featurematching,and the homography matrix is used to solve the attitude.The results show that the dual identification and location method based on the improved YOLOv4 algorithm proposed in this paper can accurately locate the charging port.The accuracy of the charging connection can reach 80%.It provides an effective way to solve the problems of automatic charging identification and positioning of electric vehicles and has strong engineering practical value.
基金supported in part by the National Natural Science Foundation of China(No.62371233)in part by the Aviation Science Foundation Project(Nos.2022Z024052003,20230058052001)。
文摘Recently,there has been a huge increase in the usage of fuel resources for automobiles which is severely affecting the climate and causing global warming.The use of electric vehicle(EV)is an effective way to protect the environment and reduce travel costs.However,the EV charging system has a single charging source,and the charging rate is limited.In this paper,an EV wireless charging system based on dual source power supply has been developed.It realizes intelligent switching between 12 V photovoltaic output and 220 V AC dual source power,and has wireless transmission function.Based on the proposed power supply architecture,the micro wireless charging model is built,which enables the EV model to store power and realize static and mobile control through the wireless induction charging system.
基金supported by the NationalNatural Science Foundation of China(No.52067013)the Natural Science Foundation of Gansu Province(No.20JR5RA395)as well as the Tianyou Innovation Team of Lanzhou Jiaotong University(TY202010).
文摘In this paper,an improved sag control strategy based on automatic SOC equalization is proposed to solve the problems of slow SOC equalization and excessive bus voltage fluctuation amplitude and offset caused by load and PV power variations in a stand-alone DC microgrid.The strategy includes primary and secondary control.Among them,the primary control suppresses the DC microgrid voltage fluctuation through the I and II section control,and the secondary control aims to correct the P-U curve of the energy storage system and the PV system,thus reducing the steady-state bus voltage excursion.The simulation results demonstrate that the proposed control strategy effectively achieves SOC balancing and enhances the immunity of bus voltage.The proposed strategy improves the voltage fluctuation suppression ability by approximately 39.4%and 43.1%under the PV power and load power fluctuation conditions,respectively.Furthermore,the steady-state deviation of the bus voltage,△U_(dc) is only 0.01–0.1 V,ensuring stable operation of the DC microgrid in fluctuating power environments.
文摘The widely adoption of Electric Vehicle (EV) has been identified as a major challenge for future development of smart grids. The ever increasing electric vehicle charging further increases the energy demand. This paper reports the development of an Advanced Metering Infrastructure (AMI) as an effective tool to reshape the load profile of EV charging by adopting appropriate demand side management strategy. This paper presents a total solution for EV charging service platform (EVAMI) based on power line and internet communication. It must be stressed that the development of Third Party Customer Service Platform in this investigation facilitates a single bill to be issued to EV owners. Hence, EV owners understand their energy usage and thus may perform energy saving activity efficiently. Experiment and evaluation of the proposed system show that the throughput achieved is about 5 Mbps at 10 ms end to end delay in Power line Communication. By introducing two dimensional dynamic pricing and charging schedule, the proposed EVAMI successfully reduces 36% peak consumption and increases the “off peak” consumption by 54%. Therefore the EVAMI does not only reduce the peak consumption but also relocates the energy demand effectively.
基金Supported by the Fund for Independent Innovation of Agricultural Sciences in Jiangsu Province(CX(13)3031)~~
文摘[Objective] In order to better meet the requirement of crops on a more and more accurate water content under various planting environment of modern agri-culture, an automatic test system of soil water characteristic curve was designed by combining the conceptions of soil moisture content and soil water potential. [Method] Electronic soil moisture tension meter was used to determine the real-time tension value of soil moisture in the tested container, and the electronic Weigh sensor was used to determine soil Weigh. Minusing method was used to calculate soil moisture content, based on which the soil water characteristic curve was plotted. [Result] Through the filed survey of 2 different kinds of soil in Jiangsu Province, the results were as fol ows: soil of different composition showed different trend in soil water characteristic curve that the soil water characteristic relation of the sandy soil in the old course of the Yel ow River in Xuzhou was Y=-0.000 2X3+0.027 7X2-1.644 5X+38.161, R2=0.991 9; while the soil water characteristic relation of the saline-alkali soil in Jinhai Farm of Dafeng was Y=-0.00 2X2-0.426X+39.905, R2=0.991 3. [Con-clusion] The automatic test system of soil water characteristic curve soil water char-acteristics curve could reflect soil moisture content and soil water potential, as wel as reflect the effectiveness of soil water to plant growth, providing basis for the sci-entific irrigation.