Carrier-based aircraft carrier landing is a special kind of tracking control problem and not suitable for classical control methods,which may miss the desired performance or result in overdesign.Therefore,we present a...Carrier-based aircraft carrier landing is a special kind of tracking control problem and not suitable for classical control methods,which may miss the desired performance or result in overdesign.Therefore,we present an optimal preview control for automatic carrier landing system(ACLS)by using state information of system,as well as future reference information,which can avoid the shortcomings of classical control methods.Since the flight performance of carrier-based aircraft is disturbed by air wake when the aircraft flies near the area of carrier stern,we design a disturbance rejection strategy to ensure that aircraft track the glide path with high precision and robustness.Further,carrier-based aircraft is a complex nonlinear system.However,the nonlinear model of carrier-based aircraft can be linearized at equilibrium landing state and decoupled into the longitudinal model and the lateral model.Therefore,an optimal preview control system is designed.The simulation results of a carrier-based aircraft show that the optimal preview control system can effectively suppress air wake.Tracking accuracy of optimal preview controller is higher than that of the proportional integral differential(PID)control system.展开更多
We summarize the guidance and control techniques of automatic carrier landing for carrier-based aircraft.First,we analyze the carrier landing operations of the manned fixed-wing aircraft,unmanned fixed-wing aircraft a...We summarize the guidance and control techniques of automatic carrier landing for carrier-based aircraft.First,we analyze the carrier landing operations of the manned fixed-wing aircraft,unmanned fixed-wing aircraft and helicopters.Second,we look into the navigation and guidance system and the flight control methods for current different aircraft.Finally,we draw several conclusions of the development prospects for aircraft carrier landing,including the precision landing control techniques,precision approach and landing guidance techniques,and adaptive,reconfigurable and intelligent flight control techniques.展开更多
For carrier-based unmanned aerial vehicles(UAVs),one of the important problems is the design of an automatic carrier landing system(ACLS)that would enable the UAVs to accomplish autolanding on the aircraft carrier.How...For carrier-based unmanned aerial vehicles(UAVs),one of the important problems is the design of an automatic carrier landing system(ACLS)that would enable the UAVs to accomplish autolanding on the aircraft carrier.However,due to the movements of the flight deck with six degree-of-freedom,the autolanding becomes sophisticated.To solve this problem,an accurate and effective ACLS is developed,which is composed of an optimal preview control based flight control system and a Kalman filter based deck motion predictor.The preview control fuses the future information of the reference glide slope to improve landing precision.The reference glide slope is normally a straight line.However,the deck motion will change the position of the ideal landing point,and tracking the ideal straight glide slope may cause landing failure.Therefore,the predictive deck motion information from the deck motion predictor is used to correct the reference glide slope,which decreases the dispersion around the desired landing point.Finally,simulations are carried out to verify the performance of the designed ACLS based on a nonlinear UAV model.展开更多
This paper focuses on the application of H_∞preview control in automatic carrier landing system(ACLS)for carrier-based aircraft.Due to the mutual movement between aircraft and carrier,the landing process becomes cons...This paper focuses on the application of H_∞preview control in automatic carrier landing system(ACLS)for carrier-based aircraft.Due to the mutual movement between aircraft and carrier,the landing process becomes considerably more challenging compared to a conventional runway landing.ACLS systems mitigate this by predicting deck motion and generating ideal glide slope path for tracking.Although,this predicted glide slope information is available in advance,conventional control structures are still unable to use this future information.H_∞preview control has the ability to utilize this future information for improving tracking response and disturbance rejection.The process of incorporating preview information into ACLS framework and synthesizing the H_∞preview controller is presented.The methodology is verified using the example of F/A-18 automatic carrier landing problem and results are presented.展开更多
This paper considers the automatic carrier landing problem of carrier-based aircrafts subjected to constraints,deck motion,measurement noises,and unknown disturbances.The iterative model predictive control(MPC)strateg...This paper considers the automatic carrier landing problem of carrier-based aircrafts subjected to constraints,deck motion,measurement noises,and unknown disturbances.The iterative model predictive control(MPC)strategy with constraints is proposed for automatic landing control of the aircraft.First,the long short-term memory(LSTM)neural network is used to calculate the adaptive reference trajectories of the aircraft.Then the Sage-Husa adaptive Kalman filter and the disturbance observer are introduced to design the composite compensator.Second,an iterative optimization algorithm is presented to fast solve the receding horizon optimal control problem of MPC based on the Lagrange’s theory.Moreover,some sufficient conditions are derived to guarantee the stability of the landing system in a closed loop with the MPC.Finally,the simulation results of F/A-18A aircraft show that compared with the conventional MPC,the presented MPC strategy improves the computational efficiency by nearly 56%and satisfies the control performance requirements of carrier landing.展开更多
A scheme of guidance and control is presented to meet the requirements for automatic landing of unmanned aerial vehicles (UAVs) based on the airborne digital flight control system and radio tracker on ground station. ...A scheme of guidance and control is presented to meet the requirements for automatic landing of unmanned aerial vehicles (UAVs) based on the airborne digital flight control system and radio tracker on ground station. An automatic landing system is realized for an unmanned aerial vehicle. The results of real time simulation and flight test are given to illustrate the effectiveness and availability of the scheme. Results meet all the requirements for automatic landing of the unmanned aerial vehicle.展开更多
The paper focuses on the design of a new automatic landing system(ALS) in longitudinal plane; the new ALS controls the aircraft trajectory and longitudinal velocity. Aircraft control is achieved by means of a propor...The paper focuses on the design of a new automatic landing system(ALS) in longitudinal plane; the new ALS controls the aircraft trajectory and longitudinal velocity. Aircraft control is achieved by means of a proportional-integral(PI) controller and the instrumental landing system– the first phase of landing(the glide slope) and a proportional-integral-derivative(PID) controller together with a radio-altimeter – the second phase of landing(the flare); both controllers modify the reference model associated with aircraft pitch angle. The control of the pitch angle and longitudinal velocity is performed by a neural network adaptive control system, based on the dynamic inversion concept, having the following as components: a linear dynamic compensator, a linear observer, reference models, and a Pseudo control hedging(PCH) block. The theoretical results are software implemented and validated by complex numerical simulations; compared with other ALSs having the same radio-technical subsystems but with conventional or fuzzy controllers for the control of aircraft pitch angle and longitudinal velocity, the architecture designed in this paper is characterized by much smaller overshoots and stationary errors.展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.61741313,61304223,61673209,61533008)the Jiangsu Six Peak of Talents program(No.KTHY-027)+1 种基金the Aeronautical Science Foundation(No.2016ZA 52009)the Fundamental Research Funds for the Central Universities(Nos.NJ20160026,NS2017015)
文摘Carrier-based aircraft carrier landing is a special kind of tracking control problem and not suitable for classical control methods,which may miss the desired performance or result in overdesign.Therefore,we present an optimal preview control for automatic carrier landing system(ACLS)by using state information of system,as well as future reference information,which can avoid the shortcomings of classical control methods.Since the flight performance of carrier-based aircraft is disturbed by air wake when the aircraft flies near the area of carrier stern,we design a disturbance rejection strategy to ensure that aircraft track the glide path with high precision and robustness.Further,carrier-based aircraft is a complex nonlinear system.However,the nonlinear model of carrier-based aircraft can be linearized at equilibrium landing state and decoupled into the longitudinal model and the lateral model.Therefore,an optimal preview control system is designed.The simulation results of a carrier-based aircraft show that the optimal preview control system can effectively suppress air wake.Tracking accuracy of optimal preview controller is higher than that of the proportional integral differential(PID)control system.
基金supported in part by the National Natural Science Foundation of China(Nos.61741313,61304223)the Jiangsu Six Peak of Talents Program(No.KTHY-027)+1 种基金the Aeronautical Science Foundation(No.2016ZA52009)the Fundamental Research Funds for the Central Universities(Nos.NS2017015,NJ20170005).
文摘We summarize the guidance and control techniques of automatic carrier landing for carrier-based aircraft.First,we analyze the carrier landing operations of the manned fixed-wing aircraft,unmanned fixed-wing aircraft and helicopters.Second,we look into the navigation and guidance system and the flight control methods for current different aircraft.Finally,we draw several conclusions of the development prospects for aircraft carrier landing,including the precision landing control techniques,precision approach and landing guidance techniques,and adaptive,reconfigurable and intelligent flight control techniques.
基金supported in part by the National Natural Science Foundations of China(Nos.61304223,61673209,61533008)the Aeronautical Science Foundation(No.2016ZA 52009)the Fundamental Research Funds for the Central Universities(No.NJ20160026)
文摘For carrier-based unmanned aerial vehicles(UAVs),one of the important problems is the design of an automatic carrier landing system(ACLS)that would enable the UAVs to accomplish autolanding on the aircraft carrier.However,due to the movements of the flight deck with six degree-of-freedom,the autolanding becomes sophisticated.To solve this problem,an accurate and effective ACLS is developed,which is composed of an optimal preview control based flight control system and a Kalman filter based deck motion predictor.The preview control fuses the future information of the reference glide slope to improve landing precision.The reference glide slope is normally a straight line.However,the deck motion will change the position of the ideal landing point,and tracking the ideal straight glide slope may cause landing failure.Therefore,the predictive deck motion information from the deck motion predictor is used to correct the reference glide slope,which decreases the dispersion around the desired landing point.Finally,simulations are carried out to verify the performance of the designed ACLS based on a nonlinear UAV model.
基金supported by the National Natural Science Foundation of China (Nos.61973158, 61304223, 61673209)the Aeronautical Science Foundation (NO.2016ZA52009)the Fundamental Research Funds for the Central Universities (Nos.NS2017015, NJ20170005)
文摘This paper focuses on the application of H_∞preview control in automatic carrier landing system(ACLS)for carrier-based aircraft.Due to the mutual movement between aircraft and carrier,the landing process becomes considerably more challenging compared to a conventional runway landing.ACLS systems mitigate this by predicting deck motion and generating ideal glide slope path for tracking.Although,this predicted glide slope information is available in advance,conventional control structures are still unable to use this future information.H_∞preview control has the ability to utilize this future information for improving tracking response and disturbance rejection.The process of incorporating preview information into ACLS framework and synthesizing the H_∞preview controller is presented.The methodology is verified using the example of F/A-18 automatic carrier landing problem and results are presented.
基金National Defense Science and Technology Innovation Project(No.2022-4b5s-wwht-0041)。
文摘This paper considers the automatic carrier landing problem of carrier-based aircrafts subjected to constraints,deck motion,measurement noises,and unknown disturbances.The iterative model predictive control(MPC)strategy with constraints is proposed for automatic landing control of the aircraft.First,the long short-term memory(LSTM)neural network is used to calculate the adaptive reference trajectories of the aircraft.Then the Sage-Husa adaptive Kalman filter and the disturbance observer are introduced to design the composite compensator.Second,an iterative optimization algorithm is presented to fast solve the receding horizon optimal control problem of MPC based on the Lagrange’s theory.Moreover,some sufficient conditions are derived to guarantee the stability of the landing system in a closed loop with the MPC.Finally,the simulation results of F/A-18A aircraft show that compared with the conventional MPC,the presented MPC strategy improves the computational efficiency by nearly 56%and satisfies the control performance requirements of carrier landing.
文摘A scheme of guidance and control is presented to meet the requirements for automatic landing of unmanned aerial vehicles (UAVs) based on the airborne digital flight control system and radio tracker on ground station. An automatic landing system is realized for an unmanned aerial vehicle. The results of real time simulation and flight test are given to illustrate the effectiveness and availability of the scheme. Results meet all the requirements for automatic landing of the unmanned aerial vehicle.
基金supported by the Grant No. 89/1.10.2015 (Modern architectures for the control of aircraft landing) of the Romanian National Authority for Scientific Research and Innovation, CNCS – UEFISCDI, project code PN-IIRU-TE-2014-4-0849
文摘The paper focuses on the design of a new automatic landing system(ALS) in longitudinal plane; the new ALS controls the aircraft trajectory and longitudinal velocity. Aircraft control is achieved by means of a proportional-integral(PI) controller and the instrumental landing system– the first phase of landing(the glide slope) and a proportional-integral-derivative(PID) controller together with a radio-altimeter – the second phase of landing(the flare); both controllers modify the reference model associated with aircraft pitch angle. The control of the pitch angle and longitudinal velocity is performed by a neural network adaptive control system, based on the dynamic inversion concept, having the following as components: a linear dynamic compensator, a linear observer, reference models, and a Pseudo control hedging(PCH) block. The theoretical results are software implemented and validated by complex numerical simulations; compared with other ALSs having the same radio-technical subsystems but with conventional or fuzzy controllers for the control of aircraft pitch angle and longitudinal velocity, the architecture designed in this paper is characterized by much smaller overshoots and stationary errors.