To relieve traffic congestion in urban rail transit stations,a new identification method of crowded passenger flow based on automatic fare collection data is proposed.First,passenger travel characteristics are analyze...To relieve traffic congestion in urban rail transit stations,a new identification method of crowded passenger flow based on automatic fare collection data is proposed.First,passenger travel characteristics are analyzed by observing the temporal distribution of inflow passengers each hour and the spatial distribution concerning cross-section passenger flow.Secondly,the identification method of crowded passenger flow is proposed to calculate the threshold via the probability density function fitted by Matlab and classify the early-warning situation based on the threshold obtained.Finally,a case study of Xinjiekou station is conducted to prove the validity and practicability of the proposed method.Compared to the traditional methods,the proposed comprehensive method can remove defects such as efficiency and delay.Furthermore,the proposed method is suitable for other rail transit companies equipped with automatic fare collection systems.展开更多
基于轨道交通自动售检票系统(Automatic Fare Collection,AFC)统计获得的集计型客流数据,依据行为分析理论,提出1种适用于路网结构变化条件下的城轨站间客流量分布预测模型。首先,基于随机效用最大化理论,构建乘客目的地选择模型,选取...基于轨道交通自动售检票系统(Automatic Fare Collection,AFC)统计获得的集计型客流数据,依据行为分析理论,提出1种适用于路网结构变化条件下的城轨站间客流量分布预测模型。首先,基于随机效用最大化理论,构建乘客目的地选择模型,选取终点站吸引客流量、列车运行时间、乘客在站换乘时间、乘客换乘次数、起终点站的线位关系和站点属性6个指标构建效用函数,以反映目的地吸引力、城轨服务水平、起终点站之间的线位匹配关系等对乘客目的地选择行为的影响,在此基础上,建立站间客流量分布预测模型;然后,利用代表个人法将AFC数据转化为非集计型数据,基于WESML(Weighted Exogenous Sampling Maximum Likelihood)估计方法,实现对目的地选择的非集计预测模型的参数标定。采用广州地铁6号线开通前后的AFC数据,对该预测模型的预测效果进行检验。结果表明:在新线接入导致地铁线网结构发生变化的条件下,全线网站间客流量分布预测的平均绝对误差仅为36人,因此该预测模型具有较高的预测精度。展开更多
介绍苏州轨道交通自动售检票(AFC,Automatic Fare Collection)系统的发展现状,分析系统发展趋势及思路;分析与AFC系统相关的新兴信息化技术,对相关技术进行适用性分析;将相关技术应用在苏州轨道交通AFC系统中,实现了语音识别、数字人民...介绍苏州轨道交通自动售检票(AFC,Automatic Fare Collection)系统的发展现状,分析系统发展趋势及思路;分析与AFC系统相关的新兴信息化技术,对相关技术进行适用性分析;将相关技术应用在苏州轨道交通AFC系统中,实现了语音识别、数字人民币使用、智能客服等功能。智能化技术及功能的应用,提升了AFC系统的智能化水平,提高了乘客服务质量,同时降低了运营成本。展开更多
基金The National Key Research and Development Program of China(No.2016YFE0206800)
文摘To relieve traffic congestion in urban rail transit stations,a new identification method of crowded passenger flow based on automatic fare collection data is proposed.First,passenger travel characteristics are analyzed by observing the temporal distribution of inflow passengers each hour and the spatial distribution concerning cross-section passenger flow.Secondly,the identification method of crowded passenger flow is proposed to calculate the threshold via the probability density function fitted by Matlab and classify the early-warning situation based on the threshold obtained.Finally,a case study of Xinjiekou station is conducted to prove the validity and practicability of the proposed method.Compared to the traditional methods,the proposed comprehensive method can remove defects such as efficiency and delay.Furthermore,the proposed method is suitable for other rail transit companies equipped with automatic fare collection systems.
文摘基于轨道交通自动售检票系统(Automatic Fare Collection,AFC)统计获得的集计型客流数据,依据行为分析理论,提出1种适用于路网结构变化条件下的城轨站间客流量分布预测模型。首先,基于随机效用最大化理论,构建乘客目的地选择模型,选取终点站吸引客流量、列车运行时间、乘客在站换乘时间、乘客换乘次数、起终点站的线位关系和站点属性6个指标构建效用函数,以反映目的地吸引力、城轨服务水平、起终点站之间的线位匹配关系等对乘客目的地选择行为的影响,在此基础上,建立站间客流量分布预测模型;然后,利用代表个人法将AFC数据转化为非集计型数据,基于WESML(Weighted Exogenous Sampling Maximum Likelihood)估计方法,实现对目的地选择的非集计预测模型的参数标定。采用广州地铁6号线开通前后的AFC数据,对该预测模型的预测效果进行检验。结果表明:在新线接入导致地铁线网结构发生变化的条件下,全线网站间客流量分布预测的平均绝对误差仅为36人,因此该预测模型具有较高的预测精度。
文摘介绍苏州轨道交通自动售检票(AFC,Automatic Fare Collection)系统的发展现状,分析系统发展趋势及思路;分析与AFC系统相关的新兴信息化技术,对相关技术进行适用性分析;将相关技术应用在苏州轨道交通AFC系统中,实现了语音识别、数字人民币使用、智能客服等功能。智能化技术及功能的应用,提升了AFC系统的智能化水平,提高了乘客服务质量,同时降低了运营成本。