This paper presented a design of an automatic lifting system. It is used for large load powered support and improves the old method wherein powered support lifting depends on manual control. This system applies a high...This paper presented a design of an automatic lifting system. It is used for large load powered support and improves the old method wherein powered support lifting depends on manual control. This system applies a high accuracy gear shunt motor to match the flow for 4 lifting cylinders, and also allocates bypass throttles to realize automatic lifting. Through the dis- placement sensor feedback the height deviation among 4 lifting cylinders during the whole lifting process, when the deviation is up to the sitting value, the corresponding bypass throttle is operated immediately to reduce the deviation, so that the moving platform of the powered support would not be stuck. Through real application, it is shown that this system can realize automatic lifting of powered support; the lifting speed is controlled between 5 and 10 mm/s, and the final aligning accuracy is up to 1 mm.展开更多
Background This paper presents an intelligent path planner for lifting tasks by tower cranes in highly complex environments,such as old industrial plants that were built many decades ago and sites used as tentative st...Background This paper presents an intelligent path planner for lifting tasks by tower cranes in highly complex environments,such as old industrial plants that were built many decades ago and sites used as tentative storage spaces.Generally,these environments do not have workable digital models and 3 D representations are impractical.Methods The current investigation introduces the use of cutting edge laser scanning technology to convert real environments into virtualized versions of the construction sites or plants in the form of point clouds.The challenge is in dealing with the large point cloud datasets from the multiple scans needed to produce a complete virtualized model.The tower crane is also virtualized for the purpose of path planning.A parallelized genetic algorithm is employed to achieve intelligent path planning for the lifting task performed by tower cranes in complicated environments taking advantage of graphics processing unit technology,which has high computing performance yet low cost.Results Optimal lifting paths are generate d in several seconds.展开更多
文摘This paper presented a design of an automatic lifting system. It is used for large load powered support and improves the old method wherein powered support lifting depends on manual control. This system applies a high accuracy gear shunt motor to match the flow for 4 lifting cylinders, and also allocates bypass throttles to realize automatic lifting. Through the dis- placement sensor feedback the height deviation among 4 lifting cylinders during the whole lifting process, when the deviation is up to the sitting value, the corresponding bypass throttle is operated immediately to reduce the deviation, so that the moving platform of the powered support would not be stuck. Through real application, it is shown that this system can realize automatic lifting of powered support; the lifting speed is controlled between 5 and 10 mm/s, and the final aligning accuracy is up to 1 mm.
文摘Background This paper presents an intelligent path planner for lifting tasks by tower cranes in highly complex environments,such as old industrial plants that were built many decades ago and sites used as tentative storage spaces.Generally,these environments do not have workable digital models and 3 D representations are impractical.Methods The current investigation introduces the use of cutting edge laser scanning technology to convert real environments into virtualized versions of the construction sites or plants in the form of point clouds.The challenge is in dealing with the large point cloud datasets from the multiple scans needed to produce a complete virtualized model.The tower crane is also virtualized for the purpose of path planning.A parallelized genetic algorithm is employed to achieve intelligent path planning for the lifting task performed by tower cranes in complicated environments taking advantage of graphics processing unit technology,which has high computing performance yet low cost.Results Optimal lifting paths are generate d in several seconds.