期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The Unified Coordinate System in Computational Fluid Dynamics 被引量:1
1
作者 W.H.Hui 《Communications in Computational Physics》 SCIE 2007年第4期577-610,共34页
A fundamental issue in CFD is the role of coordinates and,in particular,the search for“optimal”coordinates.This paper reviews and generalizes the recently developed unified coordinate system(UC).For one-dimensional ... A fundamental issue in CFD is the role of coordinates and,in particular,the search for“optimal”coordinates.This paper reviews and generalizes the recently developed unified coordinate system(UC).For one-dimensional flow,UC uses a material coordinate and thus coincides with Lagrangian system.For two-dimensional flow it uses a material coordinate,with the other coordinate determined so as to preserve mesh othorgonality(or the Jacobian),whereas for three-dimensional flow it uses two material coordinates,with the third one determined so as to preserve mesh skewness(or the Jacobian).The unified coordinate system combines the advantages of both Eulerian and the Lagrangian system and beyond.Specifically,the followings are shown in this paper.(a)For 1-D flow,Lagrangian system plus shock-adaptive Godunov scheme is superior to Eulerian system.(b)The governing equations in any moving multi-dimensional coordinates can be written as a system of closed conservation partial differential equations(PDE)by appending the time evolution equations–called geometric conservation laws–of the coefficients of the transformation(from Cartesian to the moving coordinates)to the physical conservation laws;consequently,effects of coordinate movement on the flow are fully accounted for.(c)The system of Lagrangian gas dynamics equations is written in conservation PDE form,thus providing a foundation for developing Lagrangian schemes as moving mesh schemes.(d)The Lagrangian system of gas dynamics equations in two-and three-dimension are shown to be only weakly hyperbolic,in direct contrast to the Eulerian system which is fully hyperbolic;hence the two systems are not equivalent to each other.(e)The unified coordinate system possesses the advantages of the Lagrangian system in that contact discontinuities(including material interfaces and free surfaces)are resolved sharply.(f)In using the UC,there is no need to generate a body-fitted mesh prior to computing flow past a body;the mesh is automatically generated by the flow.Numerical examples are given to confirm these properties.Relations of the UC approach with the Arbitrary-Lagrangian-Eulerian(ALE)approach and with various moving coordinates approaches are also clarified. 展开更多
关键词 Unified coordinates Eulerian coordinates Lagrangian coordinates contact discontinuities automatic mesh generation moving mesh conservation form.
原文传递
THE COMPACTION OF TIME-DEPENDENT VISCOUS GRANULAR MATERIALS CONSIDERING INERTIAL FORCES 被引量:4
2
作者 Yuching Wu Jianzhuang Xiao Cimian Zhu 《Acta Mechanica Solida Sinica》 SCIE EI 2011年第6期495-505,共11页
In the present paper, compactions of time-dependent viscous granular materials are simulated step by step using the automatic adaptive mesh generation schemes. Inertial forces of the viscous incompressible aggregates ... In the present paper, compactions of time-dependent viscous granular materials are simulated step by step using the automatic adaptive mesh generation schemes. Inertial forces of the viscous incompressible aggregates axe taken into account. The corresponding conservation equations, the weighted-integral formulations, and penalty finite element model are investigated. The fully discrete finite element equations for the simulation are derived. Polygonal particles of aggregates are simplified as mixed three-node and four-node elements. The automatic adaptive mesh generation schemes include contact detection algorithms, and mesh upgrade schemes. Solu- tions of the numerical simulation axe in good agreement with some results from literatures. With minor modification, the proposed numerical model can be applied in several industries, including the pharmaceutical, ceramic, food, and household product manufacturing. 展开更多
关键词 granular material automatic adaptive mesh generation finite element method time-dependent AGGREGATES
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部