[Objective] In order to better meet the requirement of crops on a more and more accurate water content under various planting environment of modern agri-culture, an automatic test system of soil water characteristic c...[Objective] In order to better meet the requirement of crops on a more and more accurate water content under various planting environment of modern agri-culture, an automatic test system of soil water characteristic curve was designed by combining the conceptions of soil moisture content and soil water potential. [Method] Electronic soil moisture tension meter was used to determine the real-time tension value of soil moisture in the tested container, and the electronic Weigh sensor was used to determine soil Weigh. Minusing method was used to calculate soil moisture content, based on which the soil water characteristic curve was plotted. [Result] Through the filed survey of 2 different kinds of soil in Jiangsu Province, the results were as fol ows: soil of different composition showed different trend in soil water characteristic curve that the soil water characteristic relation of the sandy soil in the old course of the Yel ow River in Xuzhou was Y=-0.000 2X3+0.027 7X2-1.644 5X+38.161, R2=0.991 9; while the soil water characteristic relation of the saline-alkali soil in Jinhai Farm of Dafeng was Y=-0.00 2X2-0.426X+39.905, R2=0.991 3. [Con-clusion] The automatic test system of soil water characteristic curve soil water char-acteristics curve could reflect soil moisture content and soil water potential, as wel as reflect the effectiveness of soil water to plant growth, providing basis for the sci-entific irrigation.展开更多
Accurate electric energy(EE)measurements and billing estimations in a power system necessitate the development of an energy flow distribution model.This paper summarizes the results of investigations on a new problem ...Accurate electric energy(EE)measurements and billing estimations in a power system necessitate the development of an energy flow distribution model.This paper summarizes the results of investigations on a new problem related to the determination of EE flow in a power system over time intervals ranging from minutes to years.The problem is referred to as the energy flow problem(EFP).Generally,the grid state and topology may fluctuate over time.An attempt to use instantaneous(not integral)power values obtained from telemetry to solve classical electrical engineering equations leads to significant modeling errors,particularly with topology changes.A promoted EFP model may be suitable in the presence of such topological and state changes.Herein,EE flows are determined using state estimation approaches based on direct EE measurement data in Watt-hours(Volt-ampere reactive-hours)provided by electricity meters.The EFP solution is essential for a broad set of applications,including meter data validation,zero unbalance EE billing,and nontechnical EE loss check.展开更多
This paper presents the design, implementation and testing of an embedded system that integrates solar and storage energy resources to smart homes within the smart mierogrid. The proposed system provides the required ...This paper presents the design, implementation and testing of an embedded system that integrates solar and storage energy resources to smart homes within the smart mierogrid. The proposed system provides the required home energy by installing renewable energy and storage devices. It also manages and schedules the power flow during peak and off-peak periods. In addition, a two-way communication protocol is developed to enable the home owners and the utility service provider to improve the energy flow and the consumption efficiency. The system can be an integral part for homes in a smart grid or smart microgrid power networks. A prototype for the proposed system was designed, implemented and tested by using a controlled load bank to simulate a scaled random real house consumption behavior. Three different scenarios were tested and the results and findings are reported. Moreover, data flow security among the home, home owners and utility server is developed to minimize cyber-attaeks.展开更多
针对光照不均匀和水表表盘雾化的指针式水表在读数检测时出现漏检、误检等问题,提出一种基于改进YOLOv5s的指针式水表读数检测方法。首先,采用Mosaic、Mixup等数据增强方法,提高模型的泛化能力;其次,引入加权双向特征金字塔网络(bilater...针对光照不均匀和水表表盘雾化的指针式水表在读数检测时出现漏检、误检等问题,提出一种基于改进YOLOv5s的指针式水表读数检测方法。首先,采用Mosaic、Mixup等数据增强方法,提高模型的泛化能力;其次,引入加权双向特征金字塔网络(bilateral feature pyramid network, BiFPN)实现更高层次的特征融合使得水表图像的深层特征图和浅层特征图充分融合,提高网络的表达能力;然后,嵌入卷积注意力机制(convolutional block attention module, CBAM),在通道和空间双重维度上强化指针式水表子表盘示数特征;最后将完全交并比损失函数(complete intersection over union loss, CIoU-Loss)替换为SIoU_Loss(scylla intersection over union loss),提升边界框的回归精度。改进算法的mAP@0.5达到97.8%,比YOLOv5s原始网络提升了3.2%。实验结果表明:该算法能有效提高指针式水表的读数检测精度。展开更多
The smart water meter in water supply network can directly affect water production and usage when faults occur.The traditional method of fault detection is inefficient with time lagging,which is not helpful for modern...The smart water meter in water supply network can directly affect water production and usage when faults occur.The traditional method of fault detection is inefficient with time lagging,which is not helpful for modernization of water supply system.The capability of automatic fault diagnosis of smart water meter is an important means to improve the service quality of water supply.In this paper,an automatic fault diagnosis method for the smart device is proposed based on BP neural network.And it was applied on Google Tensorflow platform.Fault symptom vectors were constructed using water meter status data and were used to train the neural network model.In order to improve the learning convergence speed and fault classification effect of the network,a method of weighted symptom was also employed.Experimental results show that it has good performance with a general fault diagnosis accuracy of 98.82%.展开更多
基金Supported by the Fund for Independent Innovation of Agricultural Sciences in Jiangsu Province(CX(13)3031)~~
文摘[Objective] In order to better meet the requirement of crops on a more and more accurate water content under various planting environment of modern agri-culture, an automatic test system of soil water characteristic curve was designed by combining the conceptions of soil moisture content and soil water potential. [Method] Electronic soil moisture tension meter was used to determine the real-time tension value of soil moisture in the tested container, and the electronic Weigh sensor was used to determine soil Weigh. Minusing method was used to calculate soil moisture content, based on which the soil water characteristic curve was plotted. [Result] Through the filed survey of 2 different kinds of soil in Jiangsu Province, the results were as fol ows: soil of different composition showed different trend in soil water characteristic curve that the soil water characteristic relation of the sandy soil in the old course of the Yel ow River in Xuzhou was Y=-0.000 2X3+0.027 7X2-1.644 5X+38.161, R2=0.991 9; while the soil water characteristic relation of the saline-alkali soil in Jinhai Farm of Dafeng was Y=-0.00 2X2-0.426X+39.905, R2=0.991 3. [Con-clusion] The automatic test system of soil water characteristic curve soil water char-acteristics curve could reflect soil moisture content and soil water potential, as wel as reflect the effectiveness of soil water to plant growth, providing basis for the sci-entific irrigation.
文摘Accurate electric energy(EE)measurements and billing estimations in a power system necessitate the development of an energy flow distribution model.This paper summarizes the results of investigations on a new problem related to the determination of EE flow in a power system over time intervals ranging from minutes to years.The problem is referred to as the energy flow problem(EFP).Generally,the grid state and topology may fluctuate over time.An attempt to use instantaneous(not integral)power values obtained from telemetry to solve classical electrical engineering equations leads to significant modeling errors,particularly with topology changes.A promoted EFP model may be suitable in the presence of such topological and state changes.Herein,EE flows are determined using state estimation approaches based on direct EE measurement data in Watt-hours(Volt-ampere reactive-hours)provided by electricity meters.The EFP solution is essential for a broad set of applications,including meter data validation,zero unbalance EE billing,and nontechnical EE loss check.
文摘This paper presents the design, implementation and testing of an embedded system that integrates solar and storage energy resources to smart homes within the smart mierogrid. The proposed system provides the required home energy by installing renewable energy and storage devices. It also manages and schedules the power flow during peak and off-peak periods. In addition, a two-way communication protocol is developed to enable the home owners and the utility service provider to improve the energy flow and the consumption efficiency. The system can be an integral part for homes in a smart grid or smart microgrid power networks. A prototype for the proposed system was designed, implemented and tested by using a controlled load bank to simulate a scaled random real house consumption behavior. Three different scenarios were tested and the results and findings are reported. Moreover, data flow security among the home, home owners and utility server is developed to minimize cyber-attaeks.
文摘针对光照不均匀和水表表盘雾化的指针式水表在读数检测时出现漏检、误检等问题,提出一种基于改进YOLOv5s的指针式水表读数检测方法。首先,采用Mosaic、Mixup等数据增强方法,提高模型的泛化能力;其次,引入加权双向特征金字塔网络(bilateral feature pyramid network, BiFPN)实现更高层次的特征融合使得水表图像的深层特征图和浅层特征图充分融合,提高网络的表达能力;然后,嵌入卷积注意力机制(convolutional block attention module, CBAM),在通道和空间双重维度上强化指针式水表子表盘示数特征;最后将完全交并比损失函数(complete intersection over union loss, CIoU-Loss)替换为SIoU_Loss(scylla intersection over union loss),提升边界框的回归精度。改进算法的mAP@0.5达到97.8%,比YOLOv5s原始网络提升了3.2%。实验结果表明:该算法能有效提高指针式水表的读数检测精度。
基金the Huaihua University Double First-Class initiative Applied Characteristic Discipline of Control Science and Engineeringthe Educational Cooperation Program of Ministry of Education of China(No.201801006090)the Hunan Provincial Natural Science Foundation of China(No.2017JJ3252).
文摘The smart water meter in water supply network can directly affect water production and usage when faults occur.The traditional method of fault detection is inefficient with time lagging,which is not helpful for modernization of water supply system.The capability of automatic fault diagnosis of smart water meter is an important means to improve the service quality of water supply.In this paper,an automatic fault diagnosis method for the smart device is proposed based on BP neural network.And it was applied on Google Tensorflow platform.Fault symptom vectors were constructed using water meter status data and were used to train the neural network model.In order to improve the learning convergence speed and fault classification effect of the network,a method of weighted symptom was also employed.Experimental results show that it has good performance with a general fault diagnosis accuracy of 98.82%.