针对AGV(Automated Guided Vehicle)叉车处于环境信息未知或环境动态变化情况下的路径规划及导航问题,文中提出了一种由YOLOv5(You Only Look Once version 5)目标检测算法获取目标位置。根据目标位置规划出全局基础路径,再融合DWA(Dyna...针对AGV(Automated Guided Vehicle)叉车处于环境信息未知或环境动态变化情况下的路径规划及导航问题,文中提出了一种由YOLOv5(You Only Look Once version 5)目标检测算法获取目标位置。根据目标位置规划出全局基础路径,再融合DWA(Dynamic Window Approach)局部动态路径规划算法进行AGV路径规划与导航,使AGV叉车在未知环境或局部环境信息未知的环境中能快速识别目标位置并完成路径规划到达目标位置。实验结果表明,相较于改进前方法,文中所提方法在路径长度、耗费时间以及AGV叉车航向误差方面均有良好表现,路径长度平均减少12%,耗费时间平均减少约5%且AGV航向与目标航向的平均误差在5°以内。所提方法提高了AGV叉车在未知环境中的工作效率以及工作灵活性。展开更多
A cooperative navigation algorithm for a group of autonomous underwater vehicles is proposed on the basis of motion radius vector estimation.Combined the dead reckoning data with the mutual range data through an acous...A cooperative navigation algorithm for a group of autonomous underwater vehicles is proposed on the basis of motion radius vector estimation.Combined the dead reckoning data with the mutual range data through an acoustic communication network among the group members, the relative positioning problem can be solved. A novel approach for solving the relative positioning is presented by using a recursive trigonometry technique and extended Kalman filter(EKF). Simulation results verify the correctness and effectiveness of this navigation method.展开更多
根据码头环境的特殊性,提出了一个应用在码头的集装箱装卸自动导引车(A u tom atic gu ided veh icle,AGV)系统。本系统是基于视觉导引的,采用先识别,后跟踪的方式。在识别时根据识别的标志线的特点,提出了改进的Sobe l算子和可调节参数...根据码头环境的特殊性,提出了一个应用在码头的集装箱装卸自动导引车(A u tom atic gu ided veh icle,AGV)系统。本系统是基于视觉导引的,采用先识别,后跟踪的方式。在识别时根据识别的标志线的特点,提出了改进的Sobe l算子和可调节参数的Hough变换的方法;在跟踪时,提出了一种用自适应模糊的负反馈来改善系统识别质量和频率稳定性的思想,并应用到了该系统中。文中还提出了一种简单有效的防止图像抖动的方式,使得传送给机车控制系统的参数更加平滑、稳定。实验证明,该系统可以满足AGV在码头工作环境中的全天候工作,并且保证AGV在8 m/s的速度下,系统的识别精度在5 cm以内。展开更多
文摘针对AGV(Automated Guided Vehicle)叉车处于环境信息未知或环境动态变化情况下的路径规划及导航问题,文中提出了一种由YOLOv5(You Only Look Once version 5)目标检测算法获取目标位置。根据目标位置规划出全局基础路径,再融合DWA(Dynamic Window Approach)局部动态路径规划算法进行AGV路径规划与导航,使AGV叉车在未知环境或局部环境信息未知的环境中能快速识别目标位置并完成路径规划到达目标位置。实验结果表明,相较于改进前方法,文中所提方法在路径长度、耗费时间以及AGV叉车航向误差方面均有良好表现,路径长度平均减少12%,耗费时间平均减少约5%且AGV航向与目标航向的平均误差在5°以内。所提方法提高了AGV叉车在未知环境中的工作效率以及工作灵活性。
基金Sponsored by National Natural Foundation (50979093)the High Technology Research and Development Program of China (863 Program)( 2007AA809502C)Program for New Century Excellent Talents in University (NCET-06-0877)
文摘A cooperative navigation algorithm for a group of autonomous underwater vehicles is proposed on the basis of motion radius vector estimation.Combined the dead reckoning data with the mutual range data through an acoustic communication network among the group members, the relative positioning problem can be solved. A novel approach for solving the relative positioning is presented by using a recursive trigonometry technique and extended Kalman filter(EKF). Simulation results verify the correctness and effectiveness of this navigation method.