This paper addresses the control design for automatic train operation of high-speed trains with protection constraints.A new resilient nonlinear gain-based feedback control approach is proposed,which is capable of gua...This paper addresses the control design for automatic train operation of high-speed trains with protection constraints.A new resilient nonlinear gain-based feedback control approach is proposed,which is capable of guaranteeing,under some proper non-restrictive initial conditions,the protection constraints control raised by the distance-to-go(moving authority)curve and automatic train protection in practice.A new hyperbolic tangent function-based model is presented to mimic the whole operation process of high-speed trains.The proposed feedback control methods are easily implementable and computationally inexpensive because the presence of only two feedback gains guarantee satisfactory tracking performance and closed-loop stability,no adaptations of unknown parameters,function approximation of unknown nonlinearities,and attenuation of external disturbances in the proposed control strategies.Finally,rigorous proofs and comparative simulation results are given to demonstrate the effectiveness of the proposed approaches.展开更多
To realize a better automatic train driving operation control strategy for urban rail trains,an automatic train driving method with improved DQN algorithm(classical deep reinforcement learning algorithm)is proposed as...To realize a better automatic train driving operation control strategy for urban rail trains,an automatic train driving method with improved DQN algorithm(classical deep reinforcement learning algorithm)is proposed as a research object.Firstly,the train control model is established by considering the train operation requirements.Secondly,the dueling network and DDQN ideas are introduced to prevent the value function overestimation problem.Finally,the priority experience playback and“restricted speed arrival time”are used to reduce the useless experience utilization.The experiments are carried out to verify the train operation strategy method by simulating the actual line conditions.From the experimental results,the train operation meets the ATO requirements,the energy consumption is 15.75%more energy-efficient than the actual operation,and the algorithm convergence speed is improved by about 37%.The improved DQN method not only enhances the efficiency of the algorithm but also forms a more effective operation strategy than the actual operation,thereby contributing meaningfully to the advancement of automatic train operation intelligence.展开更多
East Japan Railway Company(JR East)is aiming to“realize driverless train operation”as one of the key measures to respond to rapid changes in the business environment.Currently,Automatic Train Operation(ATO)equipment...East Japan Railway Company(JR East)is aiming to“realize driverless train operation”as one of the key measures to respond to rapid changes in the business environment.Currently,Automatic Train Operation(ATO)equipment is not installed on the Shinkansen,but there are plans to introduce ATO or driverless operation in the near future.From 2018-2021,the Ministry of Land,Infrastructure,Transport and Tourism(MLIT)held the“ATO Technology Study Group for Railways”in which the concept of technical requirements necessary for driverless operation was discussed.In 2021,JR East conducted the GOA4 demonstration test on the Joetsu Shinkansen.In this test,we were able to confirm the basic functions of Shinkansen vehicles such as automatic departure control,speed control,fixed position stop control,and remote stop control using ATO.We aim to realize unattended operation(GOA4)for deadhead trains between Niigata Station and the Niigata Shinkansen Rolling Stock Center by the end of the 2020 s,and driverless operation(GOA3)for passenger trains of the Joetsu Shinkansen by the mid-2030s and continue to develop the necessary technologies and build systems.展开更多
With rapid development of the railway traffic, the moving block signaling system (MBS) method has become more and more important for increasing the track capacity by allowing trains to run in a shorter time-headway ...With rapid development of the railway traffic, the moving block signaling system (MBS) method has become more and more important for increasing the track capacity by allowing trains to run in a shorter time-headway while maintaining the required safety margins. In this framework, the tracking target point of the following train is moving forward with its leading train. This paper focuses on the energy saving tracking control of two successive trains in MBS. Nonlinear programming method is used to optimize the energy-saving speed trajectory of the following train. The real-time location of the leading train could be integrated into the optimization process. Due to simplicity, it can be used for online implementation. The feasibility and effectiveness are verified through simulation. The results show that the new method is efficient on energy saving even when disturbances present.展开更多
The determination and optimization of Automatic Train Operation(ATO) control strategy is one of the most critical technologies for urban rail train operation. The practical ATO optimal control strategy must consider m...The determination and optimization of Automatic Train Operation(ATO) control strategy is one of the most critical technologies for urban rail train operation. The practical ATO optimal control strategy must consider many goals of the train operation, such as safety, accuracy, comfort, energy saving and so on. This paper designs a set of efficient and universal multi-objective control strategy. Firstly, based on the analysis of urban rail transit and its operating environment, the multi-objective optimization model considering all the indexes of train operation is established by using multi-objective optimization theory. Secondly, Non-dominated Sorting Genetic Algorithm II(NSGA-II) is used to solve the model, and the optimal speed curve of train running is generated.Finally, the intelligent controller is designed by the combination of fuzzy controller algorithm and the predictive control algorithm, which can control and optimize the train operation in real time. Then the robustness of the control system can ensure and the requirements for multi-objective in train operation can be satisfied.展开更多
<div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics ...<div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics model of the freight train operation process is established based on the safety and the freight train dynamics model in the process of its operation. The algorithm of combining elite competition strategy with multi-objective particle swarm optimization technology is introduced, and the winning particles are obtained through the competition between two elite particles to guide the update of other particles, so as to balance the convergence and distribution of multi-objective particle swarm optimization. The performance comparison experimental results verify the superiority of the proposed algorithm. The simulation experiments of the actual line verify the feasibility of the model and the effectiveness of the proposed algorithm. </div>展开更多
The first and last mile of a railway journey, in both freight and transit applications, constitutes a high effort and is either non-productive(e.g. in the case of depot operations) or highly inefficient(e.g. in indust...The first and last mile of a railway journey, in both freight and transit applications, constitutes a high effort and is either non-productive(e.g. in the case of depot operations) or highly inefficient(e.g. in industrial railways). These parts are typically managed on-sight, i.e. with no signalling and train protection systems ensuring the freedom of movement. This is possible due to the rather short braking distances of individual vehicles and shunting consists. The present article analyses the braking behaviour of such shunting units. For this purpose, a dedicated model is developed. It is calibrated on published results of brake tests and validated against a high-definition model for lowspeed applications. Based on this model, multiple simulations are executed to obtain a Monte Carlo simulation of the resulting braking distances. Based on the distribution properties and established safety levels, the risk of exceeding certain braking distances is evaluated and maximum braking distances are derived. Together with certain parameters of the system, these can serve in the design and safety assessment of driver assistance systems and automation of these processes.展开更多
This paper presents an adaptive terminal sliding mode control(ATSMC) method for automatic train operation. The criterion for the design is keeping high-precision tracking with relatively less adjustment of the control...This paper presents an adaptive terminal sliding mode control(ATSMC) method for automatic train operation. The criterion for the design is keeping high-precision tracking with relatively less adjustment of the control input. The ATSMC structure is designed by considering the nonlinear characteristics of the dynamic model and the parametric uncertainties of the train operation in real time. A nonsingular terminal sliding mode control is employed to make the system quickly reach a stable state within a finite time, which makes the control input less adjust to guarantee the riding comfort. An adaptive mechanism is used to estimate controller parameters to get rid of the need of the prior knowledge about the bounds of system uncertainty. Simulations are presented to demonstrate the effectiveness of the proposed controller, which has robust performance to deal with the external disturbance and system parametric uncertainties. Thereby, the system guarantees the train operation to be accurate and comfortable.展开更多
为提高干线铁路的运输效率和能力,欧洲铁路部门开始研究欧洲列控系统(ETCS)应用自动驾驶(ATO)的可行性。通过分析ETCS系统应用自动驾驶(ATO over ETCS)的研究背景和过程,阐述系统架构、工作原理、自动驾驶的功能需求以及系统规范的架构...为提高干线铁路的运输效率和能力,欧洲铁路部门开始研究欧洲列控系统(ETCS)应用自动驾驶(ATO)的可行性。通过分析ETCS系统应用自动驾驶(ATO over ETCS)的研究背景和过程,阐述系统架构、工作原理、自动驾驶的功能需求以及系统规范的架构体系。同时介绍即将投入运营的ETCS系统应用自动驾驶实例,并分析它们的结构和基本原理。展开更多
为提高高速铁路运输效率和自动化程度,根据珠三角城际铁路CTCS2+ATO列控系统的运用经验,提出高速铁路引入自动驾驶(ATO)的方案。方案采用CTCS+ATO系统结构,根据系统配置分为CTCS+ATO-PFC(Partial Function Configuration)和CTCS+ATO-FFC...为提高高速铁路运输效率和自动化程度,根据珠三角城际铁路CTCS2+ATO列控系统的运用经验,提出高速铁路引入自动驾驶(ATO)的方案。方案采用CTCS+ATO系统结构,根据系统配置分为CTCS+ATO-PFC(Partial Function Configuration)和CTCS+ATO-FFC(Full Function Configuration)两个等级。分别对每个等级的系统功能、地面和车载设备配置进行定义,并提出系统分级实施方案。CTCS+ATO列控系统方案综合考虑我国列控系统的现状和发展方向,为我国高速铁路引入自动驾驶提供参考依据。展开更多
基金supported jointly by the National Natural Science Foundation of China(61703033,61790573)Beijing Natural Science Foundation(4192046)+1 种基金Fundamental Research Funds for Central Universities(2018JBZ002)State Key Laboratory of Rail Traffic Control and Safety(RCS2018ZT013),Beijing Jiaotong University
文摘This paper addresses the control design for automatic train operation of high-speed trains with protection constraints.A new resilient nonlinear gain-based feedback control approach is proposed,which is capable of guaranteeing,under some proper non-restrictive initial conditions,the protection constraints control raised by the distance-to-go(moving authority)curve and automatic train protection in practice.A new hyperbolic tangent function-based model is presented to mimic the whole operation process of high-speed trains.The proposed feedback control methods are easily implementable and computationally inexpensive because the presence of only two feedback gains guarantee satisfactory tracking performance and closed-loop stability,no adaptations of unknown parameters,function approximation of unknown nonlinearities,and attenuation of external disturbances in the proposed control strategies.Finally,rigorous proofs and comparative simulation results are given to demonstrate the effectiveness of the proposed approaches.
文摘To realize a better automatic train driving operation control strategy for urban rail trains,an automatic train driving method with improved DQN algorithm(classical deep reinforcement learning algorithm)is proposed as a research object.Firstly,the train control model is established by considering the train operation requirements.Secondly,the dueling network and DDQN ideas are introduced to prevent the value function overestimation problem.Finally,the priority experience playback and“restricted speed arrival time”are used to reduce the useless experience utilization.The experiments are carried out to verify the train operation strategy method by simulating the actual line conditions.From the experimental results,the train operation meets the ATO requirements,the energy consumption is 15.75%more energy-efficient than the actual operation,and the algorithm convergence speed is improved by about 37%.The improved DQN method not only enhances the efficiency of the algorithm but also forms a more effective operation strategy than the actual operation,thereby contributing meaningfully to the advancement of automatic train operation intelligence.
文摘East Japan Railway Company(JR East)is aiming to“realize driverless train operation”as one of the key measures to respond to rapid changes in the business environment.Currently,Automatic Train Operation(ATO)equipment is not installed on the Shinkansen,but there are plans to introduce ATO or driverless operation in the near future.From 2018-2021,the Ministry of Land,Infrastructure,Transport and Tourism(MLIT)held the“ATO Technology Study Group for Railways”in which the concept of technical requirements necessary for driverless operation was discussed.In 2021,JR East conducted the GOA4 demonstration test on the Joetsu Shinkansen.In this test,we were able to confirm the basic functions of Shinkansen vehicles such as automatic departure control,speed control,fixed position stop control,and remote stop control using ATO.We aim to realize unattended operation(GOA4)for deadhead trains between Niigata Station and the Niigata Shinkansen Rolling Stock Center by the end of the 2020 s,and driverless operation(GOA3)for passenger trains of the Joetsu Shinkansen by the mid-2030s and continue to develop the necessary technologies and build systems.
文摘With rapid development of the railway traffic, the moving block signaling system (MBS) method has become more and more important for increasing the track capacity by allowing trains to run in a shorter time-headway while maintaining the required safety margins. In this framework, the tracking target point of the following train is moving forward with its leading train. This paper focuses on the energy saving tracking control of two successive trains in MBS. Nonlinear programming method is used to optimize the energy-saving speed trajectory of the following train. The real-time location of the leading train could be integrated into the optimization process. Due to simplicity, it can be used for online implementation. The feasibility and effectiveness are verified through simulation. The results show that the new method is efficient on energy saving even when disturbances present.
文摘The determination and optimization of Automatic Train Operation(ATO) control strategy is one of the most critical technologies for urban rail train operation. The practical ATO optimal control strategy must consider many goals of the train operation, such as safety, accuracy, comfort, energy saving and so on. This paper designs a set of efficient and universal multi-objective control strategy. Firstly, based on the analysis of urban rail transit and its operating environment, the multi-objective optimization model considering all the indexes of train operation is established by using multi-objective optimization theory. Secondly, Non-dominated Sorting Genetic Algorithm II(NSGA-II) is used to solve the model, and the optimal speed curve of train running is generated.Finally, the intelligent controller is designed by the combination of fuzzy controller algorithm and the predictive control algorithm, which can control and optimize the train operation in real time. Then the robustness of the control system can ensure and the requirements for multi-objective in train operation can be satisfied.
文摘<div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics model of the freight train operation process is established based on the safety and the freight train dynamics model in the process of its operation. The algorithm of combining elite competition strategy with multi-objective particle swarm optimization technology is introduced, and the winning particles are obtained through the competition between two elite particles to guide the update of other particles, so as to balance the convergence and distribution of multi-objective particle swarm optimization. The performance comparison experimental results verify the superiority of the proposed algorithm. The simulation experiments of the actual line verify the feasibility of the model and the effectiveness of the proposed algorithm. </div>
基金funding of the SAMIRA project by the European Regional Development Fund under grant number 0801689
文摘The first and last mile of a railway journey, in both freight and transit applications, constitutes a high effort and is either non-productive(e.g. in the case of depot operations) or highly inefficient(e.g. in industrial railways). These parts are typically managed on-sight, i.e. with no signalling and train protection systems ensuring the freedom of movement. This is possible due to the rather short braking distances of individual vehicles and shunting consists. The present article analyses the braking behaviour of such shunting units. For this purpose, a dedicated model is developed. It is calibrated on published results of brake tests and validated against a high-definition model for lowspeed applications. Based on this model, multiple simulations are executed to obtain a Monte Carlo simulation of the resulting braking distances. Based on the distribution properties and established safety levels, the risk of exceeding certain braking distances is evaluated and maximum braking distances are derived. Together with certain parameters of the system, these can serve in the design and safety assessment of driver assistance systems and automation of these processes.
基金supported by National Natural Science Foundation of China and High Speed Railway Union Foundation of China(No.U11344205)
文摘This paper presents an adaptive terminal sliding mode control(ATSMC) method for automatic train operation. The criterion for the design is keeping high-precision tracking with relatively less adjustment of the control input. The ATSMC structure is designed by considering the nonlinear characteristics of the dynamic model and the parametric uncertainties of the train operation in real time. A nonsingular terminal sliding mode control is employed to make the system quickly reach a stable state within a finite time, which makes the control input less adjust to guarantee the riding comfort. An adaptive mechanism is used to estimate controller parameters to get rid of the need of the prior knowledge about the bounds of system uncertainty. Simulations are presented to demonstrate the effectiveness of the proposed controller, which has robust performance to deal with the external disturbance and system parametric uncertainties. Thereby, the system guarantees the train operation to be accurate and comfortable.
文摘为提高干线铁路的运输效率和能力,欧洲铁路部门开始研究欧洲列控系统(ETCS)应用自动驾驶(ATO)的可行性。通过分析ETCS系统应用自动驾驶(ATO over ETCS)的研究背景和过程,阐述系统架构、工作原理、自动驾驶的功能需求以及系统规范的架构体系。同时介绍即将投入运营的ETCS系统应用自动驾驶实例,并分析它们的结构和基本原理。
文摘为提高高速铁路运输效率和自动化程度,根据珠三角城际铁路CTCS2+ATO列控系统的运用经验,提出高速铁路引入自动驾驶(ATO)的方案。方案采用CTCS+ATO系统结构,根据系统配置分为CTCS+ATO-PFC(Partial Function Configuration)和CTCS+ATO-FFC(Full Function Configuration)两个等级。分别对每个等级的系统功能、地面和车载设备配置进行定义,并提出系统分级实施方案。CTCS+ATO列控系统方案综合考虑我国列控系统的现状和发展方向,为我国高速铁路引入自动驾驶提供参考依据。