A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of me...A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of median filter is used to estimate the weld background. After the weld background is subtracted from the original image, an adaptite threshold segmentation algorithm is proposed to obtain the binary image, and then the morphological close and open operation, labeling algorithm and fids'e alarm eliminating algorithm are applied to pracess the binary image to obtain the defect, ct detection result. At last, a fast realization procedure jbr proposed method is developed. The proposed method is tested in real-time X-ray image,s obtairted in different X-ray imaging sutems. Experiment results show that the proposed method is effective to detect low contrast weld dejects with few .false alarms and is adaptive to various types of real-time X-ray imaging systems.展开更多
Mass imbalance-induced vibration affects the rotating machinery very large,especially the highspeed types.Off-line balancing techniques have been widely developed for rejecting unbalance-induced vibration but do not e...Mass imbalance-induced vibration affects the rotating machinery very large,especially the highspeed types.Off-line balancing techniques have been widely developed for rejecting unbalance-induced vibration but do not eliminate unbalanced vibration in the working state.Moreover,multiple start-stops are required in off-line balancing techniques.Therefore,research on an efficient electromagnetically-driven auto-balancer is carried out in the present work,and an internal excitation actuator is designed in this balancer.The electromagnetic characteristics of the two copper coil bobbins in the internal excitation actuator are compared and analyzed.The permanent magnets inside the actuator are simulated and analyzed with different sections of round,rectangular,and elliptical.And the results show that the elliptic type has the largest self-locking force.Finally,the dynamic balance test is performed on a test bench equipped with a designed electromagnetic balancing actuator,and the unbalance vibration is reduced from 130.23 μm to 5.98 μm.展开更多
Although HIWIN has been established for only 24years and went public just about four years ago,it has become the largest machinery manufacturer,in Taiwan and one of the world leading companies in linear motion control...Although HIWIN has been established for only 24years and went public just about four years ago,it has become the largest machinery manufacturer,in Taiwan and one of the world leading companies in linear motion control and system technology.HIWIN’s self-developed products,including ballscrews,linear guideways and industrial robots,have been widely applied to industries like bio-medical,semiconductor,optoelectronics,3C,automation,precision machinery,energy saving and transportation.With strong market performance。展开更多
The digital transformation process of power systems towards smart grids is resulting in improved reliability, efficiency and situational awareness at the expense of increased cybersecurity vulnerabilities. Given the a...The digital transformation process of power systems towards smart grids is resulting in improved reliability, efficiency and situational awareness at the expense of increased cybersecurity vulnerabilities. Given the availability of large volumes of smart grid data, machine learning-based methods are considered an effective way to improve cybersecurity posture. Despite the unquestionable merits of machine learning approaches for cybersecurity enhancement, they represent a component of the cyberattack surface that is vulnerable, in particular, to adversarial attacks. In this paper, we examine the robustness of autoencoder-based cyberattack detection systems in smart grids to adversarial attacks. A novel iterative-based method is first proposed to craft adversarial attack samples. Then, it is demonstrated that an attacker with white-box access to the autoencoder-based cyberattack detection systems can successfully craft evasive samples using the proposed method. The results indicate that naive initial adversarial seeds cannot be employed to craft successful adversarial attacks shedding insight on the complexity of designing adversarial attacks against autoencoder-based cyberattack detection systems in smart grids.展开更多
文摘A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of median filter is used to estimate the weld background. After the weld background is subtracted from the original image, an adaptite threshold segmentation algorithm is proposed to obtain the binary image, and then the morphological close and open operation, labeling algorithm and fids'e alarm eliminating algorithm are applied to pracess the binary image to obtain the defect, ct detection result. At last, a fast realization procedure jbr proposed method is developed. The proposed method is tested in real-time X-ray image,s obtairted in different X-ray imaging sutems. Experiment results show that the proposed method is effective to detect low contrast weld dejects with few .false alarms and is adaptive to various types of real-time X-ray imaging systems.
基金Supported by the National Natural Suience Foundation of China(No.51775030,91860126).
文摘Mass imbalance-induced vibration affects the rotating machinery very large,especially the highspeed types.Off-line balancing techniques have been widely developed for rejecting unbalance-induced vibration but do not eliminate unbalanced vibration in the working state.Moreover,multiple start-stops are required in off-line balancing techniques.Therefore,research on an efficient electromagnetically-driven auto-balancer is carried out in the present work,and an internal excitation actuator is designed in this balancer.The electromagnetic characteristics of the two copper coil bobbins in the internal excitation actuator are compared and analyzed.The permanent magnets inside the actuator are simulated and analyzed with different sections of round,rectangular,and elliptical.And the results show that the elliptic type has the largest self-locking force.Finally,the dynamic balance test is performed on a test bench equipped with a designed electromagnetic balancing actuator,and the unbalance vibration is reduced from 130.23 μm to 5.98 μm.
文摘Although HIWIN has been established for only 24years and went public just about four years ago,it has become the largest machinery manufacturer,in Taiwan and one of the world leading companies in linear motion control and system technology.HIWIN’s self-developed products,including ballscrews,linear guideways and industrial robots,have been widely applied to industries like bio-medical,semiconductor,optoelectronics,3C,automation,precision machinery,energy saving and transportation.With strong market performance。
文摘The digital transformation process of power systems towards smart grids is resulting in improved reliability, efficiency and situational awareness at the expense of increased cybersecurity vulnerabilities. Given the availability of large volumes of smart grid data, machine learning-based methods are considered an effective way to improve cybersecurity posture. Despite the unquestionable merits of machine learning approaches for cybersecurity enhancement, they represent a component of the cyberattack surface that is vulnerable, in particular, to adversarial attacks. In this paper, we examine the robustness of autoencoder-based cyberattack detection systems in smart grids to adversarial attacks. A novel iterative-based method is first proposed to craft adversarial attack samples. Then, it is demonstrated that an attacker with white-box access to the autoencoder-based cyberattack detection systems can successfully craft evasive samples using the proposed method. The results indicate that naive initial adversarial seeds cannot be employed to craft successful adversarial attacks shedding insight on the complexity of designing adversarial attacks against autoencoder-based cyberattack detection systems in smart grids.