A new seam-tracking method based on dynamic trajectory planning for a mobile welding robot is proposed in order to improve the response lag of the mobile robot and the high frequency oscillation in seam-tracking.By us...A new seam-tracking method based on dynamic trajectory planning for a mobile welding robot is proposed in order to improve the response lag of the mobile robot and the high frequency oscillation in seam-tracking.By using a front-placed laser-based vision sensor to dynamically extract the location of the weld seam in front of torch,the trend and direction of the weld line is roughly obtained.The robot system autonomously and dynamically performs trajectory planning based on the isometric approximation model.Arc sensor technology is applied to detect the offset during welding process in real time.The dynamic compensation of the weld path is done in combination with the control of the mobile robot and the executive body installed on it.Simulated and experimental results demonstrate that the method effectively increases the stability of welding speed and smoothness of the weld track,and hence the weld formation in curves and corners is improved.展开更多
A short survey on researching and developing status of intelligenttechnologies in modem welding manufacturing is given. According to the developing trend of advancedmanufacturing technology, a concept on intelligentiz...A short survey on researching and developing status of intelligenttechnologies in modem welding manufacturing is given. According to the developing trend of advancedmanufacturing technology, a concept on intelligentized welding manufacturing engineering (IWME), ispresented for systematization of researching and developing domains on welding automation,intelligentized welding, robotic and flexible welding and advanced welding manufacturingtechnologies. And key technologies of welding intelligent manufacturing and its developing trend inthe future are investigated.展开更多
Underwater welding is developing fast because of the exploration of marine resources, and underwater wet welding automation is urgently needed because of the rigorous environment. To control the welding process automa...Underwater welding is developing fast because of the exploration of marine resources, and underwater wet welding automation is urgently needed because of the rigorous environment. To control the welding process automatically, the model of the process should first be built to predict the current welding process status. In this paper, arc and visual sensors were used simultaneously to obtain the electrical and visual information of underwater wet welding, and support vector machines (SVM) were used to model the process, experiment results showed that the method could effectively use the information obtained and give precise prediction results.展开更多
Two types of automatic systems.for assembly welding. Santana automobile muffler in mass production are suggested in this paper Such systems were aPPlied to manufacture at the beginning of 1995, and were approved to ha...Two types of automatic systems.for assembly welding. Santana automobile muffler in mass production are suggested in this paper Such systems were aPPlied to manufacture at the beginning of 1995, and were approved to have high productivity and quality but low cost. It is an optimal selection for someone who manufacture automobile muffler or Similar productlons.展开更多
Image prooessing of wehl seam in real time is an importunity to make welding rohot be able to track weld seam. The algorithm described in this paper combines some image technologies, such as modified Sobel edge detect...Image prooessing of wehl seam in real time is an importunity to make welding rohot be able to track weld seam. The algorithm described in this paper combines some image technologies, such as modified Sobel edge detector and Hough transformation function, and especially the thresholds for image processing are ore aled adaptively by Ineans of a neural network. aests proved that this algorithm has a high reliability and rapidity in distinguishing the position of weld seam even with noises. The algorithm can be used ac the basic program .for robot to track welding seam and furthermore for calculating 3 dimensional information plan robot movement automatically.展开更多
基金supported by the National Natural Science Foundation of China(51605251)Tsinghua University Initiative Scientific Research Program(2014Z05093).
文摘A new seam-tracking method based on dynamic trajectory planning for a mobile welding robot is proposed in order to improve the response lag of the mobile robot and the high frequency oscillation in seam-tracking.By using a front-placed laser-based vision sensor to dynamically extract the location of the weld seam in front of torch,the trend and direction of the weld line is roughly obtained.The robot system autonomously and dynamically performs trajectory planning based on the isometric approximation model.Arc sensor technology is applied to detect the offset during welding process in real time.The dynamic compensation of the weld path is done in combination with the control of the mobile robot and the executive body installed on it.Simulated and experimental results demonstrate that the method effectively increases the stability of welding speed and smoothness of the weld track,and hence the weld formation in curves and corners is improved.
基金Provincial Science and Technology Committee of Shanghai,China(No.021111116)Doctoral Program Foundation of Education Ministry of China(No.20020248015)
文摘A short survey on researching and developing status of intelligenttechnologies in modem welding manufacturing is given. According to the developing trend of advancedmanufacturing technology, a concept on intelligentized welding manufacturing engineering (IWME), ispresented for systematization of researching and developing domains on welding automation,intelligentized welding, robotic and flexible welding and advanced welding manufacturingtechnologies. And key technologies of welding intelligent manufacturing and its developing trend inthe future are investigated.
基金This work was supported by the National Natural Science Foundation of China under the Grant (No. 51105103 ), China Postdoctoral Science Foundation under the Grant ( No. 2012M510945, No. 2013T60362) , Project( HIT. NSRIF. 2015115 ) supported by Natural Scientific Research Innovation Foundation in Harbin Institute of Technology.
文摘Underwater welding is developing fast because of the exploration of marine resources, and underwater wet welding automation is urgently needed because of the rigorous environment. To control the welding process automatically, the model of the process should first be built to predict the current welding process status. In this paper, arc and visual sensors were used simultaneously to obtain the electrical and visual information of underwater wet welding, and support vector machines (SVM) were used to model the process, experiment results showed that the method could effectively use the information obtained and give precise prediction results.
文摘Two types of automatic systems.for assembly welding. Santana automobile muffler in mass production are suggested in this paper Such systems were aPPlied to manufacture at the beginning of 1995, and were approved to have high productivity and quality but low cost. It is an optimal selection for someone who manufacture automobile muffler or Similar productlons.
文摘Image prooessing of wehl seam in real time is an importunity to make welding rohot be able to track weld seam. The algorithm described in this paper combines some image technologies, such as modified Sobel edge detector and Hough transformation function, and especially the thresholds for image processing are ore aled adaptively by Ineans of a neural network. aests proved that this algorithm has a high reliability and rapidity in distinguishing the position of weld seam even with noises. The algorithm can be used ac the basic program .for robot to track welding seam and furthermore for calculating 3 dimensional information plan robot movement automatically.