Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical cha...Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical challenge in accomplishing automated vehicle platoons is to deal with the effects of intermittent and sporadic vehicle-to-vehicle data transmissions caused by limited wireless communication resources. This paper addresses the co-design problem of dynamic event-triggered communication scheduling and cooperative adaptive cruise control for a convoy of automated vehicles with diverse spacing policies. The central aim is to achieve automated vehicle platooning under various gap references with desired platoon stability and spacing performance requirements, while simultaneously improving communication efficiency. Toward this aim, a dynamic event-triggered scheduling mechanism is developed such that the intervehicle data transmissions are scheduled dynamically and efficiently over time. Then, a tractable co-design criterion on the existence of both the admissible event-driven cooperative adaptive cruise control law and the desired scheduling mechanism is derived. Finally, comparative simulation results are presented to substantiate the effectiveness and merits of the obtained results.展开更多
AUTOMATION has come a long way since the early days of mechanization,i.e.,the process of working exclusively by hand or using animals to work with machinery.The rise of steam engines and water wheels represented the f...AUTOMATION has come a long way since the early days of mechanization,i.e.,the process of working exclusively by hand or using animals to work with machinery.The rise of steam engines and water wheels represented the first generation of industry,which is now called Industry Citation:L.Vlacic,H.Huang,M.Dotoli,Y.Wang,P.Ioanno,L.Fan,X.Wang,R.Carli,C.Lv,L.Li,X.Na,Q.-L.Han,and F.-Y.Wang,“Automation 5.0:The key to systems intelligence and Industry 5.0,”IEEE/CAA J.Autom.Sinica,vol.11,no.8,pp.1723-1727,Aug.2024.展开更多
Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issu...Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issue of automated vehicles affected by replay attacks.A proportional-integral-observer(PIO)with predetermined forgetting parameters is first constructed to acquire the dynamical information of vehicles.Then,a time-varying parameter and two positive scalars are employed to describe the temporal behavior of replay attacks.In light of such a scheme and the common properties of Laplace matrices,the closed-loop system with PIO-based controllers is transformed into a switched and time-delayed one.Furthermore,some sufficient conditions are derived to achieve the desired platooning performance by the view of the Lyapunov stability theory.The controller gains are analytically determined by resorting to the solution of certain matrix inequalities only dependent on maximum and minimum eigenvalues of communication topologies.Finally,a simulation example is provided to illustrate the effectiveness of the proposed control strategy.展开更多
The concept of smart houses has grown in prominence in recent years.Major challenges linked to smart homes are identification theft,data safety,automated decision-making for IoT-based devices,and the security of the d...The concept of smart houses has grown in prominence in recent years.Major challenges linked to smart homes are identification theft,data safety,automated decision-making for IoT-based devices,and the security of the device itself.Current home automation systems try to address these issues but there is still an urgent need for a dependable and secure smart home solution that includes automatic decision-making systems and methodical features.This paper proposes a smart home system based on ensemble learning of random forest(RF)and convolutional neural networks(CNN)for programmed decision-making tasks,such as categorizing gadgets as“OFF”or“ON”based on their normal routine in homes.We have integrated emerging blockchain technology to provide secure,decentralized,and trustworthy authentication and recognition of IoT devices.Our system consists of a 5V relay circuit,various sensors,and a Raspberry Pi server and database for managing devices.We have also developed an Android app that communicates with the server interface through an HTTP web interface and an Apache server.The feasibility and efficacy of the proposed smart home automation system have been evaluated in both laboratory and real-time settings.It is essential to use inexpensive,scalable,and readily available components and technologies in smart home automation systems.Additionally,we must incorporate a comprehensive security and privacy-centric design that emphasizes risk assessments,such as cyberattacks,hardware security,and other cyber threats.The trial results support the proposed system and demonstrate its potential for use in everyday life.展开更多
Model mismatches can cause multi-dimensional uncertainties for the receding horizon control strategies of automated vehicles(AVs).The uncertainties may lead to potentially hazardous behaviors when the AV tracks ideal ...Model mismatches can cause multi-dimensional uncertainties for the receding horizon control strategies of automated vehicles(AVs).The uncertainties may lead to potentially hazardous behaviors when the AV tracks ideal trajectories that are individually optimized by the AV's planning layer.To address this issue,this study proposes a safe motion planning and control(SMPAC)framework for AVs.For the control layer,a dynamic model including multi-dimensional uncertainties is established.A zonotopic tube-based robust model predictive control scheme is proposed to constrain the uncertain system in a bounded minimum robust positive invariant set.A flexible tube with varying cross-sections is constructed to reduce the controller conservatism.For the planning layer,a concept of safety sets,representing the geometric boundaries of the ego vehicle and obstacles under uncertainties,is proposed.The safety sets provide the basis for the subsequent evaluation and ranking of the generated trajectories.An efficient collision avoidance algorithm decides the desired trajectory through the intersection detection of the safety sets between the ego vehicle and obstacles.A numerical simulation and hardware-in-the-loop experiment validate the effectiveness and real-time performance of the SMPAC.The result of two driving scenarios indicates that the SMPAC can guarantee the safety of automated driving under multi-dimensional uncertainties.展开更多
Brief:New control theory is required to underpin safe design and deployment of future highly automated systems to deal with uncertain environments and complicated tasks,enabled by AI and other advanced technologies.Go...Brief:New control theory is required to underpin safe design and deployment of future highly automated systems to deal with uncertain environments and complicated tasks,enabled by AI and other advanced technologies.Goal-Oriented Control Systems offer potential to transform the control system design from currently instructing a control system how to perform a task to specifying what is to be achieved.展开更多
This research aims to propose a practical framework designed for the automatic analysis of a product’s comprehensive functionality and security vulnerabilities,generating applicable guidelines based on real-world sof...This research aims to propose a practical framework designed for the automatic analysis of a product’s comprehensive functionality and security vulnerabilities,generating applicable guidelines based on real-world software.The existing analysis of software security vulnerabilities often focuses on specific features or modules.This partial and arbitrary analysis of the security vulnerabilities makes it challenging to comprehend the overall security vulnerabilities of the software.The key novelty lies in overcoming the constraints of partial approaches.The proposed framework utilizes data from various sources to create a comprehensive functionality profile,facilitating the derivation of real-world security guidelines.Security guidelines are dynamically generated by associating functional security vulnerabilities with the latest Common Vulnerabilities and Exposure(CVE)and Common Vulnerability Scoring System(CVSS)scores,resulting in automated guidelines tailored to each product.These guidelines are not only practical but also applicable in real-world software,allowing for prioritized security responses.The proposed framework is applied to virtual private network(VPN)software,wherein a validated Level 2 data flow diagram is generated using the Spoofing,Tampering,Repudiation,Information Disclosure,Denial of Service,and Elevation of privilege(STRIDE)technique with references to various papers and examples from related software.The analysis resulted in the identification of a total of 121 vulnerabilities.The successful implementation and validation demonstrate the framework’s efficacy in generating customized guidelines for entire systems,subsystems,and selected modules.展开更多
Human agency has become increasingly limited in complex systems with increasingly automated decision-making capabilities.For instance,human occupants are passengers and do not have direct vehicle control in fully auto...Human agency has become increasingly limited in complex systems with increasingly automated decision-making capabilities.For instance,human occupants are passengers and do not have direct vehicle control in fully automated cars(i.e.,driverless cars).An interesting question is whether users are responsible for the accidents of these cars.Normative ethical and legal analyses frequently argue that individuals should not bear responsibility for harm beyond their control.Here,we consider human judgment of responsibility for accidents involving fully automated cars through three studies with seven experiments(N=2668).We compared the responsibility attributed to the occupants in three conditions:an owner in his private fully automated car,a passenger in a driverless robotaxi,and a passenger in a conventional taxi,where none of these three occupants have direct vehicle control over the involved vehicles that cause identical pedestrian injury.In contrast to normative analyses,we show that the occupants of driverless cars(private cars and robotaxis)are attributed more responsibility than conventional taxi passengers.This dilemma is robust across different contexts(e.g.,participants from China vs the Republic of Korea,participants with first-vs third-person perspectives,and occupant presence vs absence).Furthermore,we observe that this is not due to the perception that these occupants have greater control over driving but because they are more expected to foresee the potential consequences of using driverless cars.Our findings suggest that when driverless vehicles(private cars and taxis)cause harm,their users may face more social pressure,which public discourse and legal regulations should manage appropriately.展开更多
Gas chromatography-mass spectrometry(GC-MS)is an extremely important analytical technique that is widely used in organic geochemistry.It is the only approach to capture biomarker features of organic matter and provide...Gas chromatography-mass spectrometry(GC-MS)is an extremely important analytical technique that is widely used in organic geochemistry.It is the only approach to capture biomarker features of organic matter and provides the key evidence for oil-source correlation and thermal maturity determination.However,the conventional way of processing and interpreting the mass chromatogram is both timeconsuming and labor-intensive,which increases the research cost and restrains extensive applications of this method.To overcome this limitation,a correlation model is developed based on the convolution neural network(CNN)to link the mass chromatogram and biomarker features of samples from the Triassic Yanchang Formation,Ordos Basin,China.In this way,the mass chromatogram can be automatically interpreted.This research first performs dimensionality reduction for 15 biomarker parameters via the factor analysis and then quantifies the biomarker features using two indexes(i.e.MI and PMI)that represent the organic matter thermal maturity and parent material type,respectively.Subsequently,training,interpretation,and validation are performed multiple times using different CNN models to optimize the model structure and hyper-parameter setting,with the mass chromatogram used as the input and the obtained MI and PMI values for supervision(label).The optimized model presents high accuracy in automatically interpreting the mass chromatogram,with R2values typically above 0.85 and0.80 for the thermal maturity and parent material interpretation results,respectively.The significance of this research is twofold:(i)developing an efficient technique for geochemical research;(ii)more importantly,demonstrating the potential of artificial intelligence in organic geochemistry and providing vital references for future related studies.展开更多
Considering the pivotal role of single-wavelength anomalous diffraction(SAD) in macromolecular crystallography,our objective was to introduce DSAS,a novel program designed for efficient anomalous scattering substructu...Considering the pivotal role of single-wavelength anomalous diffraction(SAD) in macromolecular crystallography,our objective was to introduce DSAS,a novel program designed for efficient anomalous scattering substructure determination.DSAS stands out with its core components:a modified phase-retrieval algorithm and automated parameter tuning.The software boasts an intuitive graphical user interface(GUI),facilitating seamless input of essential data and real-time monitoring.Extensive testing on DSAS has involved diverse datasets,encompassing proteins,nucleic acids,and various anomalous scatters such as sulfur(S),selenium(Se),metals,and halogens.The results confirm DSAS’s exceptional performance in accurately determining heavy atom positions,making it a highly effective tool in the field.展开更多
Improving the cooperative scheduling efficiency of equipment is the key for automated container terminals to copewith the development trend of large-scale ships. In order to improve the solution efficiency of the exis...Improving the cooperative scheduling efficiency of equipment is the key for automated container terminals to copewith the development trend of large-scale ships. In order to improve the solution efficiency of the existing spacetimenetwork (STN) model for the cooperative scheduling problem of yard cranes (YCs) and automated guidedvehicles (AGVs) and extend its application scenarios, two improved STN models are proposed. The flow balanceconstraints in the original model are decomposed, and the trajectory constraints of YCs and AGVs are added toacquire the model STN_A. The coupling constraint in STN_A is updated, and buffer constraints are added toSTN_A so that themodel STN_B is built.As the size of the problem increases, the solution speed of CPLEX becomesthe bottleneck. So a heuristic method containing three groups of heuristic rules is designed to obtain a near-optimalsolution quickly. Experimental results showthat the computation time of STN_A is shortened by 49.47% on averageand the gap is reduced by 1.69% on average compared with the original model. The gap between the solution ofthe heuristic rules and the solution of CPLEX is less than 3.50%, and the solution time of the heuristic rules is onaverage 99.85% less than the solution time of CPLEX. Compared with STN_A, the computation time for solvingSTN_B increases by 58.93% on average.展开更多
Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking acc...Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking accidents.The paper proposes a Lyapunov-based nonlinear model predictive controller embedding an instructable solution which is generated by the modified rear-wheel feedback method(RF-LNMPC)in order to improve the overall path tracking accuracy in parking conditions.Firstly,A discrete-time RF-LNMPC considering the position and attitude of the parking vehicle is proposed to increase the success rate of automated parking effectively.Secondly,the RF-LNMPC problem with a multi-objective cost function is solved by the Interior-Point Optimization,of which the iterative initial values are described as the instructable solutions calculated by combining modified rear-wheel feedback to improve the performance of local optimal solution.Thirdly,the details on the computation of the terminal constraint and terminal cost for the linear time-varying case is presented.The closed-loop stability is verified via Lyapunov techniques by considering the terminal constraint and terminal cost theoretically.Finally,the proposed RF-LNMPC is implemented on a selfdriving Lincoln MKZ platform and the experiment results have shown improved performance in parallel and vertical parking conditions.The Monte Carlo analysis also demonstrates good stability and repeatability of the proposed method which can be applied in practical use in the near future.展开更多
Web application fingerprint recognition is an effective security technology designed to identify and classify web applications,thereby enhancing the detection of potential threats and attacks.Traditional fingerprint r...Web application fingerprint recognition is an effective security technology designed to identify and classify web applications,thereby enhancing the detection of potential threats and attacks.Traditional fingerprint recognition methods,which rely on preannotated feature matching,face inherent limitations due to the ever-evolving nature and diverse landscape of web applications.In response to these challenges,this work proposes an innovative web application fingerprint recognition method founded on clustering techniques.The method involves extensive data collection from the Tranco List,employing adjusted feature selection built upon Wappalyzer and noise reduction through truncated SVD dimensionality reduction.The core of the methodology lies in the application of the unsupervised OPTICS clustering algorithm,eliminating the need for preannotated labels.By transforming web applications into feature vectors and leveraging clustering algorithms,our approach accurately categorizes diverse web applications,providing comprehensive and precise fingerprint recognition.The experimental results,which are obtained on a dataset featuring various web application types,affirm the efficacy of the method,demonstrating its ability to achieve high accuracy and broad coverage.This novel approach not only distinguishes between different web application types effectively but also demonstrates superiority in terms of classification accuracy and coverage,offering a robust solution to the challenges of web application fingerprint recognition.展开更多
In healthcare,the persistent challenge of arrhythmias,a leading cause of global mortality,has sparked extensive research into the automation of detection using machine learning(ML)algorithms.However,traditional ML and...In healthcare,the persistent challenge of arrhythmias,a leading cause of global mortality,has sparked extensive research into the automation of detection using machine learning(ML)algorithms.However,traditional ML and AutoML approaches have revealed their limitations,notably regarding feature generalization and automation efficiency.This glaring research gap has motivated the development of AutoRhythmAI,an innovative solution that integrates both machine and deep learning to revolutionize the diagnosis of arrhythmias.Our approach encompasses two distinct pipelines tailored for binary-class and multi-class arrhythmia detection,effectively bridging the gap between data preprocessing and model selection.To validate our system,we have rigorously tested AutoRhythmAI using a multimodal dataset,surpassing the accuracy achieved using a single dataset and underscoring the robustness of our methodology.In the first pipeline,we employ signal filtering and ML algorithms for preprocessing,followed by data balancing and split for training.The second pipeline is dedicated to feature extraction and classification,utilizing deep learning models.Notably,we introduce the‘RRI-convoluted trans-former model’as a novel addition for binary-class arrhythmias.An ensemble-based approach then amalgamates all models,considering their respective weights,resulting in an optimal model pipeline.In our study,the VGGRes Model achieved impressive results in multi-class arrhythmia detection,with an accuracy of 97.39%and firm performance in precision(82.13%),recall(31.91%),and F1-score(82.61%).In the binary-class task,the proposed model achieved an outstanding accuracy of 96.60%.These results highlight the effectiveness of our approach in improving arrhythmia detection,with notably high accuracy and well-balanced performance metrics.展开更多
Considering the uncertainty of the speed of horizontal transportation equipment,a cooperative scheduling model of multiple equipment resources in the automated container terminal was constructed to minimize the comple...Considering the uncertainty of the speed of horizontal transportation equipment,a cooperative scheduling model of multiple equipment resources in the automated container terminal was constructed to minimize the completion time,thus improving the loading and unloading efficiencies of automated container terminals.The proposed model integrated the two loading and unloading processes of“double-trolley quay crane+AGV+ARMG”and“single-trolley quay crane+container truck+ARMG”and then designed the simulated annealing particle swarm algorithm to solve the model.By comparing the results of the particle swarm algorithm and genetic algorithm,the algorithm designed in this paper could effectively improve the global and local space search capability of finding the optimal solution.Furthermore,the results showed that the proposed method of collaborative scheduling of multiple equipment resources in automated terminals considering hybrid processes effectively improved the loading and unloading efficiencies of automated container terminals.The findings of this study provide a reference for the improvement of loading and unloading processes as well as coordinated scheduling in automated terminals.展开更多
The context of recognizing handwritten city names,this research addresses the challenges posed by the manual inscription of Bangladeshi city names in the Bangla script.In today’s technology-driven era,where precise t...The context of recognizing handwritten city names,this research addresses the challenges posed by the manual inscription of Bangladeshi city names in the Bangla script.In today’s technology-driven era,where precise tools for reading handwritten text are essential,this study focuses on leveraging deep learning to understand the intricacies of Bangla handwriting.The existing dearth of dedicated datasets has impeded the progress of Bangla handwritten city name recognition systems,particularly in critical areas such as postal automation and document processing.Notably,no prior research has specifically targeted the unique needs of Bangla handwritten city name recognition.To bridge this gap,the study collects real-world images from diverse sources to construct a comprehensive dataset for Bangla Hand Written City name recognition.The emphasis on practical data for system training enhances accuracy.The research further conducts a comparative analysis,pitting state-of-the-art(SOTA)deep learning models,including EfficientNetB0,VGG16,ResNet50,DenseNet201,InceptionV3,and Xception,against a custom Convolutional Neural Networks(CNN)model named“Our CNN.”The results showcase the superior performance of“Our CNN,”with a test accuracy of 99.97% and an outstanding F1 score of 99.95%.These metrics underscore its potential for automating city name recognition,particularly in postal services.The study concludes by highlighting the significance of meticulous dataset curation and the promising outlook for custom CNN architectures.It encourages future research avenues,including dataset expansion,algorithm refinement,exploration of recurrent neural networks and attention mechanisms,real-world deployment of models,and extension to other regional languages and scripts.These recommendations offer exciting possibilities for advancing the field of handwritten recognition technology and hold practical implications for enhancing global postal services.展开更多
AIM:To compare the surgical outcomes of glaucoma drainage device implantation(GDI)and trans-scleral neodymium:YAG cyclophotocoagulation(CPC)in the management of refractory glaucoma after Descemetstripping automated en...AIM:To compare the surgical outcomes of glaucoma drainage device implantation(GDI)and trans-scleral neodymium:YAG cyclophotocoagulation(CPC)in the management of refractory glaucoma after Descemetstripping automated endothelial keratoplasty(DSAEK).METHODS:This retrospective study on observational case series enrolled 29 patients who underwent DSAEK and posterior anti-glaucoma surgery(15 with GDI and 14 with CPC).The main outcome measures were intraocular pressure(IOP),glaucoma surgery success rate(defined as IOP of 6–21 mm Hg without additional anti-glaucoma operation),number of glaucoma medications,endothelial graft status,and best-corrected visual acuity(BCVA).RESULTS:The mean follow-up time was 34.1 and 21.0mo for DSAEK or glaucoma surgeries,both for the GDI and CPC groups.Both groups showed significant IOP reduction after glaucoma surgery.The GDI group presented a significantly higher success rate in IOP control than the CPC group(60%vs 21.4%,P=0.03).Both procedures significantly decreased the number of glaucoma medications(P=0.03).Forty percent and 57%of cases in the GDI and the CPC group,respectively,experienced endothelial graft failure during follow-up(P=0.36).Significantly worse BCVA after surgery was observed in the CPC group but not in the GDI group.CONCLUSION:Both GDI and CPC significantly decrease IOP in eyes with glaucoma after DSAEK.GDI is preferable to CPC in refractory glaucoma cases after DSAEK,as it manifests a significantly higher success rate for IOP control,similar endothelial graft failure rate,and relatively preserves BCVA than CPC.展开更多
Automatic pavement crack detection plays an important role in ensuring road safety.In images of cracks,information about the cracks can be conveyed through high-frequency and low-fre-quency signals that focus on fine ...Automatic pavement crack detection plays an important role in ensuring road safety.In images of cracks,information about the cracks can be conveyed through high-frequency and low-fre-quency signals that focus on fine details and global structures,respectively.The output features obtained from different convolutional layers can be combined to represent information about both high-frequency and low-frequency signals.In this paper,we propose an encoder-decoder framework called octave hierarchical network(Octave-H),which is based on the U-Network(U-Net)architec-ture and utilizes an octave convolutional neural network and a hierarchical feature learning module for performing crack detection.The proposed octave convolution is capable of extracting multi-fre-quency feature maps,capturing both fine details and global cracks.We propose a hierarchical feature learning module that merges multi-frequency-scale feature maps with different levels(high and low)of octave convolutional layers.To verify the superiority of the proposed Octave-H,we employed the CrackForest dataset(CFD)and AigleRN databases to evaluate this method.The experimental results demonstrate that Octave-H outperforms other algorithms with satisfactory performance.展开更多
Landslide hazard mapping is essential for regional landslide hazard management.The main objective of this study is to construct a rainfall-induced landslide hazard map of Luhe County,China based on an automated machin...Landslide hazard mapping is essential for regional landslide hazard management.The main objective of this study is to construct a rainfall-induced landslide hazard map of Luhe County,China based on an automated machine learning framework(AutoGluon).A total of 2241 landslides were identified from satellite images before and after the rainfall event,and 10 impact factors including elevation,slope,aspect,normalized difference vegetation index(NDVI),topographic wetness index(TWI),lithology,land cover,distance to roads,distance to rivers,and rainfall were selected as indicators.The WeightedEnsemble model,which is an ensemble of 13 basic machine learning models weighted together,was used to output the landslide hazard assessment results.The results indicate that landslides mainly occurred in the central part of the study area,especially in Hetian and Shanghu.Totally 102.44 s were spent to train all the models,and the ensemble model WeightedEnsemble has an Area Under the Curve(AUC)value of92.36%in the test set.In addition,14.95%of the study area was determined to be at very high hazard,with a landslide density of 12.02 per square kilometer.This study serves as a significant reference for the prevention and mitigation of geological hazards and land use planning in Luhe County.展开更多
基金supported in part by the Australian Research Council Discovery Early Career Researcher Award(DE200101128)。
文摘Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical challenge in accomplishing automated vehicle platoons is to deal with the effects of intermittent and sporadic vehicle-to-vehicle data transmissions caused by limited wireless communication resources. This paper addresses the co-design problem of dynamic event-triggered communication scheduling and cooperative adaptive cruise control for a convoy of automated vehicles with diverse spacing policies. The central aim is to achieve automated vehicle platooning under various gap references with desired platoon stability and spacing performance requirements, while simultaneously improving communication efficiency. Toward this aim, a dynamic event-triggered scheduling mechanism is developed such that the intervehicle data transmissions are scheduled dynamically and efficiently over time. Then, a tractable co-design criterion on the existence of both the admissible event-driven cooperative adaptive cruise control law and the desired scheduling mechanism is derived. Finally, comparative simulation results are presented to substantiate the effectiveness and merits of the obtained results.
基金supported in part by the Hong Kong Polytechnic University via the project P0038447The Science and Technology Development Fund,Macao SAR(0093/2023/RIA2)The Science and Technology Development Fund,Macao SAR(0145/2023/RIA3).
文摘AUTOMATION has come a long way since the early days of mechanization,i.e.,the process of working exclusively by hand or using animals to work with machinery.The rise of steam engines and water wheels represented the first generation of industry,which is now called Industry Citation:L.Vlacic,H.Huang,M.Dotoli,Y.Wang,P.Ioanno,L.Fan,X.Wang,R.Carli,C.Lv,L.Li,X.Na,Q.-L.Han,and F.-Y.Wang,“Automation 5.0:The key to systems intelligence and Industry 5.0,”IEEE/CAA J.Autom.Sinica,vol.11,no.8,pp.1723-1727,Aug.2024.
基金supported in part by the National Natural Science Foundation of China (61973219,U21A2019,61873058)the Hainan Province Science and Technology Special Fund (ZDYF2022SHFZ105)。
文摘Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issue of automated vehicles affected by replay attacks.A proportional-integral-observer(PIO)with predetermined forgetting parameters is first constructed to acquire the dynamical information of vehicles.Then,a time-varying parameter and two positive scalars are employed to describe the temporal behavior of replay attacks.In light of such a scheme and the common properties of Laplace matrices,the closed-loop system with PIO-based controllers is transformed into a switched and time-delayed one.Furthermore,some sufficient conditions are derived to achieve the desired platooning performance by the view of the Lyapunov stability theory.The controller gains are analytically determined by resorting to the solution of certain matrix inequalities only dependent on maximum and minimum eigenvalues of communication topologies.Finally,a simulation example is provided to illustrate the effectiveness of the proposed control strategy.
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2024R333)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘The concept of smart houses has grown in prominence in recent years.Major challenges linked to smart homes are identification theft,data safety,automated decision-making for IoT-based devices,and the security of the device itself.Current home automation systems try to address these issues but there is still an urgent need for a dependable and secure smart home solution that includes automatic decision-making systems and methodical features.This paper proposes a smart home system based on ensemble learning of random forest(RF)and convolutional neural networks(CNN)for programmed decision-making tasks,such as categorizing gadgets as“OFF”or“ON”based on their normal routine in homes.We have integrated emerging blockchain technology to provide secure,decentralized,and trustworthy authentication and recognition of IoT devices.Our system consists of a 5V relay circuit,various sensors,and a Raspberry Pi server and database for managing devices.We have also developed an Android app that communicates with the server interface through an HTTP web interface and an Apache server.The feasibility and efficacy of the proposed smart home automation system have been evaluated in both laboratory and real-time settings.It is essential to use inexpensive,scalable,and readily available components and technologies in smart home automation systems.Additionally,we must incorporate a comprehensive security and privacy-centric design that emphasizes risk assessments,such as cyberattacks,hardware security,and other cyber threats.The trial results support the proposed system and demonstrate its potential for use in everyday life.
基金supported by the National Natural Science Foundation of China(51875061)China Scholarship Council(202206050107)。
文摘Model mismatches can cause multi-dimensional uncertainties for the receding horizon control strategies of automated vehicles(AVs).The uncertainties may lead to potentially hazardous behaviors when the AV tracks ideal trajectories that are individually optimized by the AV's planning layer.To address this issue,this study proposes a safe motion planning and control(SMPAC)framework for AVs.For the control layer,a dynamic model including multi-dimensional uncertainties is established.A zonotopic tube-based robust model predictive control scheme is proposed to constrain the uncertain system in a bounded minimum robust positive invariant set.A flexible tube with varying cross-sections is constructed to reduce the controller conservatism.For the planning layer,a concept of safety sets,representing the geometric boundaries of the ego vehicle and obstacles under uncertainties,is proposed.The safety sets provide the basis for the subsequent evaluation and ranking of the generated trajectories.An efficient collision avoidance algorithm decides the desired trajectory through the intersection detection of the safety sets between the ego vehicle and obstacles.A numerical simulation and hardware-in-the-loop experiment validate the effectiveness and real-time performance of the SMPAC.The result of two driving scenarios indicates that the SMPAC can guarantee the safety of automated driving under multi-dimensional uncertainties.
基金the UK Engineering and Physical Sciences Research Council(EPSRC)Established Career Fellowship“Goal-Oriented Control Systems:Disturbance,Uncertainty and Constraints”(EP/T005734/1)。
文摘Brief:New control theory is required to underpin safe design and deployment of future highly automated systems to deal with uncertain environments and complicated tasks,enabled by AI and other advanced technologies.Goal-Oriented Control Systems offer potential to transform the control system design from currently instructing a control system how to perform a task to specifying what is to be achieved.
基金This work is the result of commissioned research project supported by the Affiliated Institute of ETRI(2022-086)received by Junho AhnThis research was supported by the National Research Foundation of Korea(NRF)Basic Science Research Program funded by the Ministry of Education(No.2020R1A6A1A03040583)this work was supported by Korea Institute for Advancement of Technology(KIAT)Grant funded by the Korea government(MOTIE)(P0008691,HRD Program for Industrial Innovation).
文摘This research aims to propose a practical framework designed for the automatic analysis of a product’s comprehensive functionality and security vulnerabilities,generating applicable guidelines based on real-world software.The existing analysis of software security vulnerabilities often focuses on specific features or modules.This partial and arbitrary analysis of the security vulnerabilities makes it challenging to comprehend the overall security vulnerabilities of the software.The key novelty lies in overcoming the constraints of partial approaches.The proposed framework utilizes data from various sources to create a comprehensive functionality profile,facilitating the derivation of real-world security guidelines.Security guidelines are dynamically generated by associating functional security vulnerabilities with the latest Common Vulnerabilities and Exposure(CVE)and Common Vulnerability Scoring System(CVSS)scores,resulting in automated guidelines tailored to each product.These guidelines are not only practical but also applicable in real-world software,allowing for prioritized security responses.The proposed framework is applied to virtual private network(VPN)software,wherein a validated Level 2 data flow diagram is generated using the Spoofing,Tampering,Repudiation,Information Disclosure,Denial of Service,and Elevation of privilege(STRIDE)technique with references to various papers and examples from related software.The analysis resulted in the identification of a total of 121 vulnerabilities.The successful implementation and validation demonstrate the framework’s efficacy in generating customized guidelines for entire systems,subsystems,and selected modules.
基金supported by the National Natural Science Foundation of China(72071143)。
文摘Human agency has become increasingly limited in complex systems with increasingly automated decision-making capabilities.For instance,human occupants are passengers and do not have direct vehicle control in fully automated cars(i.e.,driverless cars).An interesting question is whether users are responsible for the accidents of these cars.Normative ethical and legal analyses frequently argue that individuals should not bear responsibility for harm beyond their control.Here,we consider human judgment of responsibility for accidents involving fully automated cars through three studies with seven experiments(N=2668).We compared the responsibility attributed to the occupants in three conditions:an owner in his private fully automated car,a passenger in a driverless robotaxi,and a passenger in a conventional taxi,where none of these three occupants have direct vehicle control over the involved vehicles that cause identical pedestrian injury.In contrast to normative analyses,we show that the occupants of driverless cars(private cars and robotaxis)are attributed more responsibility than conventional taxi passengers.This dilemma is robust across different contexts(e.g.,participants from China vs the Republic of Korea,participants with first-vs third-person perspectives,and occupant presence vs absence).Furthermore,we observe that this is not due to the perception that these occupants have greater control over driving but because they are more expected to foresee the potential consequences of using driverless cars.Our findings suggest that when driverless vehicles(private cars and taxis)cause harm,their users may face more social pressure,which public discourse and legal regulations should manage appropriately.
基金financially supported by China Postdoctoral Science Foundation(Grant No.2023M730365)Natural Science Foundation of Hubei Province of China(Grant No.2023AFB232)。
文摘Gas chromatography-mass spectrometry(GC-MS)is an extremely important analytical technique that is widely used in organic geochemistry.It is the only approach to capture biomarker features of organic matter and provides the key evidence for oil-source correlation and thermal maturity determination.However,the conventional way of processing and interpreting the mass chromatogram is both timeconsuming and labor-intensive,which increases the research cost and restrains extensive applications of this method.To overcome this limitation,a correlation model is developed based on the convolution neural network(CNN)to link the mass chromatogram and biomarker features of samples from the Triassic Yanchang Formation,Ordos Basin,China.In this way,the mass chromatogram can be automatically interpreted.This research first performs dimensionality reduction for 15 biomarker parameters via the factor analysis and then quantifies the biomarker features using two indexes(i.e.MI and PMI)that represent the organic matter thermal maturity and parent material type,respectively.Subsequently,training,interpretation,and validation are performed multiple times using different CNN models to optimize the model structure and hyper-parameter setting,with the mass chromatogram used as the input and the obtained MI and PMI values for supervision(label).The optimized model presents high accuracy in automatically interpreting the mass chromatogram,with R2values typically above 0.85 and0.80 for the thermal maturity and parent material interpretation results,respectively.The significance of this research is twofold:(i)developing an efficient technique for geochemical research;(ii)more importantly,demonstrating the potential of artificial intelligence in organic geochemistry and providing vital references for future related studies.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.32371280 and T2350011)。
文摘Considering the pivotal role of single-wavelength anomalous diffraction(SAD) in macromolecular crystallography,our objective was to introduce DSAS,a novel program designed for efficient anomalous scattering substructure determination.DSAS stands out with its core components:a modified phase-retrieval algorithm and automated parameter tuning.The software boasts an intuitive graphical user interface(GUI),facilitating seamless input of essential data and real-time monitoring.Extensive testing on DSAS has involved diverse datasets,encompassing proteins,nucleic acids,and various anomalous scatters such as sulfur(S),selenium(Se),metals,and halogens.The results confirm DSAS’s exceptional performance in accurately determining heavy atom positions,making it a highly effective tool in the field.
基金National Natural Science Foundation of China(62073212).
文摘Improving the cooperative scheduling efficiency of equipment is the key for automated container terminals to copewith the development trend of large-scale ships. In order to improve the solution efficiency of the existing spacetimenetwork (STN) model for the cooperative scheduling problem of yard cranes (YCs) and automated guidedvehicles (AGVs) and extend its application scenarios, two improved STN models are proposed. The flow balanceconstraints in the original model are decomposed, and the trajectory constraints of YCs and AGVs are added toacquire the model STN_A. The coupling constraint in STN_A is updated, and buffer constraints are added toSTN_A so that themodel STN_B is built.As the size of the problem increases, the solution speed of CPLEX becomesthe bottleneck. So a heuristic method containing three groups of heuristic rules is designed to obtain a near-optimalsolution quickly. Experimental results showthat the computation time of STN_A is shortened by 49.47% on averageand the gap is reduced by 1.69% on average compared with the original model. The gap between the solution ofthe heuristic rules and the solution of CPLEX is less than 3.50%, and the solution time of the heuristic rules is onaverage 99.85% less than the solution time of CPLEX. Compared with STN_A, the computation time for solvingSTN_B increases by 58.93% on average.
基金Supported by National Key R&D Program of China (Grant No.2021YFB2501800)National Natural Science Foundation of China (Grant No.52172384)+1 种基金Science and Technology Innovation Program of Hunan Province of China (Grant No.2021RC3048)State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle of China (Grant No.72275004)。
文摘Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking accidents.The paper proposes a Lyapunov-based nonlinear model predictive controller embedding an instructable solution which is generated by the modified rear-wheel feedback method(RF-LNMPC)in order to improve the overall path tracking accuracy in parking conditions.Firstly,A discrete-time RF-LNMPC considering the position and attitude of the parking vehicle is proposed to increase the success rate of automated parking effectively.Secondly,the RF-LNMPC problem with a multi-objective cost function is solved by the Interior-Point Optimization,of which the iterative initial values are described as the instructable solutions calculated by combining modified rear-wheel feedback to improve the performance of local optimal solution.Thirdly,the details on the computation of the terminal constraint and terminal cost for the linear time-varying case is presented.The closed-loop stability is verified via Lyapunov techniques by considering the terminal constraint and terminal cost theoretically.Finally,the proposed RF-LNMPC is implemented on a selfdriving Lincoln MKZ platform and the experiment results have shown improved performance in parallel and vertical parking conditions.The Monte Carlo analysis also demonstrates good stability and repeatability of the proposed method which can be applied in practical use in the near future.
基金supported in part by the National Science Foundation of China under Grants U22B2027,62172297,62102262,61902276 and 62272311,Tianjin Intelligent Manufacturing Special Fund Project under Grant 20211097the China Guangxi Science and Technology Plan Project(Guangxi Science and Technology Base and Talent Special Project)under Grant AD23026096(Application Number 2022AC20001)+1 种基金Hainan Provincial Natural Science Foundation of China under Grant 622RC616CCF-Nsfocus Kunpeng Fund Project under Grant CCF-NSFOCUS202207.
文摘Web application fingerprint recognition is an effective security technology designed to identify and classify web applications,thereby enhancing the detection of potential threats and attacks.Traditional fingerprint recognition methods,which rely on preannotated feature matching,face inherent limitations due to the ever-evolving nature and diverse landscape of web applications.In response to these challenges,this work proposes an innovative web application fingerprint recognition method founded on clustering techniques.The method involves extensive data collection from the Tranco List,employing adjusted feature selection built upon Wappalyzer and noise reduction through truncated SVD dimensionality reduction.The core of the methodology lies in the application of the unsupervised OPTICS clustering algorithm,eliminating the need for preannotated labels.By transforming web applications into feature vectors and leveraging clustering algorithms,our approach accurately categorizes diverse web applications,providing comprehensive and precise fingerprint recognition.The experimental results,which are obtained on a dataset featuring various web application types,affirm the efficacy of the method,demonstrating its ability to achieve high accuracy and broad coverage.This novel approach not only distinguishes between different web application types effectively but also demonstrates superiority in terms of classification accuracy and coverage,offering a robust solution to the challenges of web application fingerprint recognition.
文摘In healthcare,the persistent challenge of arrhythmias,a leading cause of global mortality,has sparked extensive research into the automation of detection using machine learning(ML)algorithms.However,traditional ML and AutoML approaches have revealed their limitations,notably regarding feature generalization and automation efficiency.This glaring research gap has motivated the development of AutoRhythmAI,an innovative solution that integrates both machine and deep learning to revolutionize the diagnosis of arrhythmias.Our approach encompasses two distinct pipelines tailored for binary-class and multi-class arrhythmia detection,effectively bridging the gap between data preprocessing and model selection.To validate our system,we have rigorously tested AutoRhythmAI using a multimodal dataset,surpassing the accuracy achieved using a single dataset and underscoring the robustness of our methodology.In the first pipeline,we employ signal filtering and ML algorithms for preprocessing,followed by data balancing and split for training.The second pipeline is dedicated to feature extraction and classification,utilizing deep learning models.Notably,we introduce the‘RRI-convoluted trans-former model’as a novel addition for binary-class arrhythmias.An ensemble-based approach then amalgamates all models,considering their respective weights,resulting in an optimal model pipeline.In our study,the VGGRes Model achieved impressive results in multi-class arrhythmia detection,with an accuracy of 97.39%and firm performance in precision(82.13%),recall(31.91%),and F1-score(82.61%).In the binary-class task,the proposed model achieved an outstanding accuracy of 96.60%.These results highlight the effectiveness of our approach in improving arrhythmia detection,with notably high accuracy and well-balanced performance metrics.
基金supported by the National Key R&D Program of China(Grant No.2017YFC0805309)Natural Science Foundation of Fujian Province(Grant No.2021J01820)Department of Education of Fujian Province Project(Grant Nos.JAT190294 and JAT210230).
文摘Considering the uncertainty of the speed of horizontal transportation equipment,a cooperative scheduling model of multiple equipment resources in the automated container terminal was constructed to minimize the completion time,thus improving the loading and unloading efficiencies of automated container terminals.The proposed model integrated the two loading and unloading processes of“double-trolley quay crane+AGV+ARMG”and“single-trolley quay crane+container truck+ARMG”and then designed the simulated annealing particle swarm algorithm to solve the model.By comparing the results of the particle swarm algorithm and genetic algorithm,the algorithm designed in this paper could effectively improve the global and local space search capability of finding the optimal solution.Furthermore,the results showed that the proposed method of collaborative scheduling of multiple equipment resources in automated terminals considering hybrid processes effectively improved the loading and unloading efficiencies of automated container terminals.The findings of this study provide a reference for the improvement of loading and unloading processes as well as coordinated scheduling in automated terminals.
基金MMU Postdoctoral and Research Fellow(Account:MMUI/230023.02).
文摘The context of recognizing handwritten city names,this research addresses the challenges posed by the manual inscription of Bangladeshi city names in the Bangla script.In today’s technology-driven era,where precise tools for reading handwritten text are essential,this study focuses on leveraging deep learning to understand the intricacies of Bangla handwriting.The existing dearth of dedicated datasets has impeded the progress of Bangla handwritten city name recognition systems,particularly in critical areas such as postal automation and document processing.Notably,no prior research has specifically targeted the unique needs of Bangla handwritten city name recognition.To bridge this gap,the study collects real-world images from diverse sources to construct a comprehensive dataset for Bangla Hand Written City name recognition.The emphasis on practical data for system training enhances accuracy.The research further conducts a comparative analysis,pitting state-of-the-art(SOTA)deep learning models,including EfficientNetB0,VGG16,ResNet50,DenseNet201,InceptionV3,and Xception,against a custom Convolutional Neural Networks(CNN)model named“Our CNN.”The results showcase the superior performance of“Our CNN,”with a test accuracy of 99.97% and an outstanding F1 score of 99.95%.These metrics underscore its potential for automating city name recognition,particularly in postal services.The study concludes by highlighting the significance of meticulous dataset curation and the promising outlook for custom CNN architectures.It encourages future research avenues,including dataset expansion,algorithm refinement,exploration of recurrent neural networks and attention mechanisms,real-world deployment of models,and extension to other regional languages and scripts.These recommendations offer exciting possibilities for advancing the field of handwritten recognition technology and hold practical implications for enhancing global postal services.
文摘AIM:To compare the surgical outcomes of glaucoma drainage device implantation(GDI)and trans-scleral neodymium:YAG cyclophotocoagulation(CPC)in the management of refractory glaucoma after Descemetstripping automated endothelial keratoplasty(DSAEK).METHODS:This retrospective study on observational case series enrolled 29 patients who underwent DSAEK and posterior anti-glaucoma surgery(15 with GDI and 14 with CPC).The main outcome measures were intraocular pressure(IOP),glaucoma surgery success rate(defined as IOP of 6–21 mm Hg without additional anti-glaucoma operation),number of glaucoma medications,endothelial graft status,and best-corrected visual acuity(BCVA).RESULTS:The mean follow-up time was 34.1 and 21.0mo for DSAEK or glaucoma surgeries,both for the GDI and CPC groups.Both groups showed significant IOP reduction after glaucoma surgery.The GDI group presented a significantly higher success rate in IOP control than the CPC group(60%vs 21.4%,P=0.03).Both procedures significantly decreased the number of glaucoma medications(P=0.03).Forty percent and 57%of cases in the GDI and the CPC group,respectively,experienced endothelial graft failure during follow-up(P=0.36).Significantly worse BCVA after surgery was observed in the CPC group but not in the GDI group.CONCLUSION:Both GDI and CPC significantly decrease IOP in eyes with glaucoma after DSAEK.GDI is preferable to CPC in refractory glaucoma cases after DSAEK,as it manifests a significantly higher success rate for IOP control,similar endothelial graft failure rate,and relatively preserves BCVA than CPC.
基金supported in part by the National Natural Foundation of China(No.62176147)。
文摘Automatic pavement crack detection plays an important role in ensuring road safety.In images of cracks,information about the cracks can be conveyed through high-frequency and low-fre-quency signals that focus on fine details and global structures,respectively.The output features obtained from different convolutional layers can be combined to represent information about both high-frequency and low-frequency signals.In this paper,we propose an encoder-decoder framework called octave hierarchical network(Octave-H),which is based on the U-Network(U-Net)architec-ture and utilizes an octave convolutional neural network and a hierarchical feature learning module for performing crack detection.The proposed octave convolution is capable of extracting multi-fre-quency feature maps,capturing both fine details and global cracks.We propose a hierarchical feature learning module that merges multi-frequency-scale feature maps with different levels(high and low)of octave convolutional layers.To verify the superiority of the proposed Octave-H,we employed the CrackForest dataset(CFD)and AigleRN databases to evaluate this method.The experimental results demonstrate that Octave-H outperforms other algorithms with satisfactory performance.
基金supported by the State Administration of Science,Technology and Industry for National Defence,PRC(KJSP2020020303)the National Institute of Natural Hazards,Ministry of Emergency Management of China(ZDJ2021-12)。
文摘Landslide hazard mapping is essential for regional landslide hazard management.The main objective of this study is to construct a rainfall-induced landslide hazard map of Luhe County,China based on an automated machine learning framework(AutoGluon).A total of 2241 landslides were identified from satellite images before and after the rainfall event,and 10 impact factors including elevation,slope,aspect,normalized difference vegetation index(NDVI),topographic wetness index(TWI),lithology,land cover,distance to roads,distance to rivers,and rainfall were selected as indicators.The WeightedEnsemble model,which is an ensemble of 13 basic machine learning models weighted together,was used to output the landslide hazard assessment results.The results indicate that landslides mainly occurred in the central part of the study area,especially in Hetian and Shanghu.Totally 102.44 s were spent to train all the models,and the ensemble model WeightedEnsemble has an Area Under the Curve(AUC)value of92.36%in the test set.In addition,14.95%of the study area was determined to be at very high hazard,with a landslide density of 12.02 per square kilometer.This study serves as a significant reference for the prevention and mitigation of geological hazards and land use planning in Luhe County.