A reduced chemical kinetic model (44 species and 72 reactions) for the homogeneous charge compression ignition (HCCI) combustion of n-heptane was optimized to improve its autoignition predictions under different e...A reduced chemical kinetic model (44 species and 72 reactions) for the homogeneous charge compression ignition (HCCI) combustion of n-heptane was optimized to improve its autoignition predictions under different engine operating conditions. The seven kinetic parameters of the optimized model were determined by using the combination of a micro-genetic algorithm optimization methodology and the SENKIN program of CHEMKIN chemical kinetics software package. The optimization was performed within the range of equivalence ratios 0.2-1.2, initial temperature 310- 375 K and initial pressure 0, 1-0.3 MPa, The engine simulations show that the optimized model agrees better with the detailed chemical kinetic model (544 species and 2 446 reactions) than the original model does.展开更多
Process scale-up remains a considerable challenge for environmental applications of non-thermal plasmas.Undersanding the impact of reactor hydrodynamics in the performance of the process is a key step to overcome this...Process scale-up remains a considerable challenge for environmental applications of non-thermal plasmas.Undersanding the impact of reactor hydrodynamics in the performance of the process is a key step to overcome this challenge.In this work,we apply chemical engineering concepts to analyse the impact that different non-thermal plasma reactor configurations and regimes,such as laminar or plug flow,may have on the reactor performance.We do this in the particular context of the removal of pollutants by non-thermal plasmas,for which a simplified model is available.We generalise this model to different reactor configurations and,under certain hypotheses,we show that a reactor in the laminar regime may have a behaviour significantly different from one in the plug flow regime,often assumed in the non-thermal plasma literature.On the other hand,we show that a packed-bed reactor behaves very similarly to one in the plug flow regime.Beyond those results,the reader will find in this work a quick introduction to chemical reaction engineering concepts.展开更多
A numerical model is presented to investigate the performance of homogeneous charge compression ignition(HCCI) engines fueled with ethanol. Two approaches are studied. On one hand, two-step reaction mechanisms with Ar...A numerical model is presented to investigate the performance of homogeneous charge compression ignition(HCCI) engines fueled with ethanol. Two approaches are studied. On one hand, two-step reaction mechanisms with Arrhenius reaction rates are implemented in combustion chemistry modeling. On the other hand, a reduced mechanism containing important reactions of ethanol involving heat release rate and reaction rates compatible with experimental data is employed. Since controls of combustion phenomenon and ignition timing are the main issues of these engines, the effects of inlet temperature and equivalence ratio as the controlling factors on the operating parameters such as ignition timing, burn duration, in-cylinder temperature and pressure of HCCI engines are explored. The results show that the maximum predicted pressures for thermodynamic model are about 71.3×10~5 Pa and 79.79×10~5 Pa, and for chemical kinetic model, they are about 71.48×10~5 Pa and 78.123×10~5 Pa, fairly comparable with corresponding experimental values of 72×10~5 Pa and 78.7×10~5 Pa. It is observed that increasing the initial temperature advances the ignition timing, decreases the burn duration and increases the peak temperature and pressure. Moreover, the maximum temperature and pressure are associated with richer mixtures.展开更多
A radio-frequency(RF) inductively coupled negative hydrogen ion source(NHIS) has been adopted in the China Fusion Engineering Test Reactor(CFETR) to generate negative hydrogen ions.By incorporating the level-lumping m...A radio-frequency(RF) inductively coupled negative hydrogen ion source(NHIS) has been adopted in the China Fusion Engineering Test Reactor(CFETR) to generate negative hydrogen ions.By incorporating the level-lumping method into a three-dimensional fluid model,the volume production and transportation of H^(-) in the NHIS,which consists of a cylindrical driver region and a rectangular expansion chamber,are investigated self-consistently at a large input power(40 k W) and different pressures(0.3–2.0 Pa).The results indicate that with the increase of pressure,the H^(-) density at the bottom of the expansion region first increases and then decreases.In addition,the effect of the magnetic filter is examined.It is noteworthy that a significant increase in the H^(-) density is observed when the magnetic filter is introduced.As the permanent magnets move towards the driver region,the H^(-) density decreases monotonically and the asymmetry is enhanced.This study contributes to the understanding of H-distribution under various conditions and facilitates the optimization of volume production of negative hydrogen ions in the NHIS.展开更多
The multi-reactors network, a closed sequence of two or more catalytic fixed bed reactors with periodical change of the feed position, was studied by means of numerical simulations. Two advantages of such a reactor co...The multi-reactors network, a closed sequence of two or more catalytic fixed bed reactors with periodical change of the feed position, was studied by means of numerical simulations. Two advantages of such a reactor configuration, the possibility of exploiting the thermal storage capacity of the catalyst and the optimal temperature profile for exothermic equilibrium-limited reactions, were analyzed. The former feature acting as a regenerative heat exchanger was simulated in the case of the combustion of lean volatile organic compound (VOC) mixtures, with the possibility of multiple stability windows found when rich mixtures are fed. The latter was demonstrated using the methanol synthesis, with the enhancement of the conversion and product selectivity predicted. The influence of the number of the reactors in the network was pointed out. Some results obtained in the reverse-flow reactors were also presented for comparison.展开更多
Chemical looping combustion(CLC)has emerged as a cost-effective technology for carbon capture at the combustion source.The reactor,being central to the implementation of CLC,primarily adheres to two technological path...Chemical looping combustion(CLC)has emerged as a cost-effective technology for carbon capture at the combustion source.The reactor,being central to the implementation of CLC,primarily adheres to two technological pathways:the dual fluidized bed reactor and the packed bed reactor.However,the intricate interaction between gas-solid reaction flow and heat/mass transfer processes in these reactors gives rise to diverse operational principles at both macroscopic and microscopic levels across various reactor forms and scales,making performance prediction challenging.Consequently,the rational design of CLC reactors poses a significant challenge in advancing this technology to commercial viability.This article offers an extensive review of the prevailing reactor designs in CLC,delving into reactor characteristics,pivotal aspects of the design process,methodologies,and representative studies in the field.The predominant reactor design approaches are categorized into engineering and numerical methods.The former encompasses phenomenological and similarity analysis methods,whereas the latter consists of macroscopic and computational fluid dynamics simulation methods.Each method possesses its theoretical framework,distinctive characteristics,appropriate applications,and respective advantages and limitations.In practical applications,integrating these aspects is essential.For instance,the engineering design,which is less costly but also less precise,is effective for quickly screening numerous potential design scenarios.In contrast,the numerical design,despite its higher computational demand and greater model complexity,offers improved predictive accuracy and is optimal for validating and refining engineering design solutions.展开更多
High-pressure direct-injection (HPDI) of natu- ral gas is one of the most promising solutions for future ship engines, in which the combustion process is mainly controlled by the chemical kinetics. However, the employ...High-pressure direct-injection (HPDI) of natu- ral gas is one of the most promising solutions for future ship engines, in which the combustion process is mainly controlled by the chemical kinetics. However, the employment of detailed chemical models for the multi-dimensional combustion simulation is significantly expensive due to the large scale of the marine engine. In the present paper, a reduced n-heptane/methane model consisting of 35-step reactions was constructed using multiple reduction approaches. Then this model was further reduced to include only 27 reactions by utilizing the HyChem (Hybrid Chemistry) method. An overall good agreement with the experimentally measured ignition delay data of both n-heptane and methane for these two reduced models was achieved and reasonable predictions for the measured laminar flame speeds were obtained for the 35-step model. But the 27-step model cannot predict the laminar flame speed very well. In addition, these two reduced models were both able to reproduce the experimentally measured in-cylinder pressure and heat release rate profiles for a HPDI natural gas marine engine, the highest error of predicted combustion phase being 6.5%. However, the engine-out CO emission was over-predicted and the highest error of predicted NOx emission was less than 12.9%. The predicted distributions of temperature and equivalence ratio by the 35-step and 27-step models are similar to those of the 334-step model. However, the predicted distributions of OH and CH2O are significantly different from those of the 334-step model. In short, the reduced chemical kinetic models developed provide a high-efficient and dependable method to simulate the characteristics of combustion and emissions in HPDI natural gas marine engines.展开更多
基金SUPPORTED BY NATIONAL KEY BASIC RESEARCH PLAN ("973" PLAN, NO. 2001CB209202).
文摘A reduced chemical kinetic model (44 species and 72 reactions) for the homogeneous charge compression ignition (HCCI) combustion of n-heptane was optimized to improve its autoignition predictions under different engine operating conditions. The seven kinetic parameters of the optimized model were determined by using the combination of a micro-genetic algorithm optimization methodology and the SENKIN program of CHEMKIN chemical kinetics software package. The optimization was performed within the range of equivalence ratios 0.2-1.2, initial temperature 310- 375 K and initial pressure 0, 1-0.3 MPa, The engine simulations show that the optimized model agrees better with the detailed chemical kinetic model (544 species and 2 446 reactions) than the original model does.
文摘Process scale-up remains a considerable challenge for environmental applications of non-thermal plasmas.Undersanding the impact of reactor hydrodynamics in the performance of the process is a key step to overcome this challenge.In this work,we apply chemical engineering concepts to analyse the impact that different non-thermal plasma reactor configurations and regimes,such as laminar or plug flow,may have on the reactor performance.We do this in the particular context of the removal of pollutants by non-thermal plasmas,for which a simplified model is available.We generalise this model to different reactor configurations and,under certain hypotheses,we show that a reactor in the laminar regime may have a behaviour significantly different from one in the plug flow regime,often assumed in the non-thermal plasma literature.On the other hand,we show that a packed-bed reactor behaves very similarly to one in the plug flow regime.Beyond those results,the reader will find in this work a quick introduction to chemical reaction engineering concepts.
文摘基于文献计量方法,利用Scifinder Web数据库,从年发文量、研究机构、索引词、被引文献和施引文献等不同角度对《化工学报》、AICh E Journal、Chemical Engineering Science(CES)和Industrial&Engineering Chemistry Research(IECR)4个国内外主流化工期刊近20年(1996—2015年)发表的49565篇文献,进行了较为全面的探讨,以期为我国化工学科"双一流"建设及同类期刊的发展提供借鉴和参考。中国机构在国际期刊上日益增多的发文量和上升的发文机构排名,显示了近年来国内化工科研强劲的发展势头和国际影响力。同时,国内各机构化工学科的学术研究日益活跃,高水平学术论文成果的产出仅仅集中于少数顶尖科研机构的现象有所变化。《化工学报》与三大主流期刊AICh E Journal、CES和IECR的发文重点及热点基本一致。近10年(2006—2015年),中国机构在"聚合物形态"、"离子液体"、"纳米颗粒"等方面对三大国际期刊发文有较大的贡献。
文摘A numerical model is presented to investigate the performance of homogeneous charge compression ignition(HCCI) engines fueled with ethanol. Two approaches are studied. On one hand, two-step reaction mechanisms with Arrhenius reaction rates are implemented in combustion chemistry modeling. On the other hand, a reduced mechanism containing important reactions of ethanol involving heat release rate and reaction rates compatible with experimental data is employed. Since controls of combustion phenomenon and ignition timing are the main issues of these engines, the effects of inlet temperature and equivalence ratio as the controlling factors on the operating parameters such as ignition timing, burn duration, in-cylinder temperature and pressure of HCCI engines are explored. The results show that the maximum predicted pressures for thermodynamic model are about 71.3×10~5 Pa and 79.79×10~5 Pa, and for chemical kinetic model, they are about 71.48×10~5 Pa and 78.123×10~5 Pa, fairly comparable with corresponding experimental values of 72×10~5 Pa and 78.7×10~5 Pa. It is observed that increasing the initial temperature advances the ignition timing, decreases the burn duration and increases the peak temperature and pressure. Moreover, the maximum temperature and pressure are associated with richer mixtures.
基金supported by the National Key R&D Program of China (No. 2017YFE0300106)National Natural Science Foundation of China (Nos. 11935005 and 12075049)the Fundamental Research Funds for the Central Universities(Nos. DUT21TD104 and DUT21LAB110)。
文摘A radio-frequency(RF) inductively coupled negative hydrogen ion source(NHIS) has been adopted in the China Fusion Engineering Test Reactor(CFETR) to generate negative hydrogen ions.By incorporating the level-lumping method into a three-dimensional fluid model,the volume production and transportation of H^(-) in the NHIS,which consists of a cylindrical driver region and a rectangular expansion chamber,are investigated self-consistently at a large input power(40 k W) and different pressures(0.3–2.0 Pa).The results indicate that with the increase of pressure,the H^(-) density at the bottom of the expansion region first increases and then decreases.In addition,the effect of the magnetic filter is examined.It is noteworthy that a significant increase in the H^(-) density is observed when the magnetic filter is introduced.As the permanent magnets move towards the driver region,the H^(-) density decreases monotonically and the asymmetry is enhanced.This study contributes to the understanding of H-distribution under various conditions and facilitates the optimization of volume production of negative hydrogen ions in the NHIS.
文摘The multi-reactors network, a closed sequence of two or more catalytic fixed bed reactors with periodical change of the feed position, was studied by means of numerical simulations. Two advantages of such a reactor configuration, the possibility of exploiting the thermal storage capacity of the catalyst and the optimal temperature profile for exothermic equilibrium-limited reactions, were analyzed. The former feature acting as a regenerative heat exchanger was simulated in the case of the combustion of lean volatile organic compound (VOC) mixtures, with the possibility of multiple stability windows found when rich mixtures are fed. The latter was demonstrated using the methanol synthesis, with the enhancement of the conversion and product selectivity predicted. The influence of the number of the reactors in the network was pointed out. Some results obtained in the reverse-flow reactors were also presented for comparison.
基金the support from the National Key R&D Program of China(2022YFE0135500)National Natural Science Foundation of China(52025063)+1 种基金Key R&D Program of Hubei Province(2022BCA087)Natural Science Foundation of Hubei Province(2022CFD035).
文摘Chemical looping combustion(CLC)has emerged as a cost-effective technology for carbon capture at the combustion source.The reactor,being central to the implementation of CLC,primarily adheres to two technological pathways:the dual fluidized bed reactor and the packed bed reactor.However,the intricate interaction between gas-solid reaction flow and heat/mass transfer processes in these reactors gives rise to diverse operational principles at both macroscopic and microscopic levels across various reactor forms and scales,making performance prediction challenging.Consequently,the rational design of CLC reactors poses a significant challenge in advancing this technology to commercial viability.This article offers an extensive review of the prevailing reactor designs in CLC,delving into reactor characteristics,pivotal aspects of the design process,methodologies,and representative studies in the field.The predominant reactor design approaches are categorized into engineering and numerical methods.The former encompasses phenomenological and similarity analysis methods,whereas the latter consists of macroscopic and computational fluid dynamics simulation methods.Each method possesses its theoretical framework,distinctive characteristics,appropriate applications,and respective advantages and limitations.In practical applications,integrating these aspects is essential.For instance,the engineering design,which is less costly but also less precise,is effective for quickly screening numerous potential design scenarios.In contrast,the numerical design,despite its higher computational demand and greater model complexity,offers improved predictive accuracy and is optimal for validating and refining engineering design solutions.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.91941102 and 51922076).
文摘High-pressure direct-injection (HPDI) of natu- ral gas is one of the most promising solutions for future ship engines, in which the combustion process is mainly controlled by the chemical kinetics. However, the employment of detailed chemical models for the multi-dimensional combustion simulation is significantly expensive due to the large scale of the marine engine. In the present paper, a reduced n-heptane/methane model consisting of 35-step reactions was constructed using multiple reduction approaches. Then this model was further reduced to include only 27 reactions by utilizing the HyChem (Hybrid Chemistry) method. An overall good agreement with the experimentally measured ignition delay data of both n-heptane and methane for these two reduced models was achieved and reasonable predictions for the measured laminar flame speeds were obtained for the 35-step model. But the 27-step model cannot predict the laminar flame speed very well. In addition, these two reduced models were both able to reproduce the experimentally measured in-cylinder pressure and heat release rate profiles for a HPDI natural gas marine engine, the highest error of predicted combustion phase being 6.5%. However, the engine-out CO emission was over-predicted and the highest error of predicted NOx emission was less than 12.9%. The predicted distributions of temperature and equivalence ratio by the 35-step and 27-step models are similar to those of the 334-step model. However, the predicted distributions of OH and CH2O are significantly different from those of the 334-step model. In short, the reduced chemical kinetic models developed provide a high-efficient and dependable method to simulate the characteristics of combustion and emissions in HPDI natural gas marine engines.