This study evaluates the development of a testing process for the automotive software domain, highlighting challenges stemming from the absence of adequate processes. The research demonstrates the application of Desig...This study evaluates the development of a testing process for the automotive software domain, highlighting challenges stemming from the absence of adequate processes. The research demonstrates the application of Design Science Research methodology in developing, an automotive software testing process—ProTSA, using six functional testing modules. Additionally, the study evaluates the benefits of implementing ProTSA in a specific Original Equipment Manufacturer (OEM) using an experimental single-case approach with industry professionals’ participation through a survey. The study concludes that combining testing techniques with effective communication and alignment is crucial for enhancing software quality. Furthermore, survey data indicates that implementing ProTSA leads to productivity gains by initiating tests early, resulting in time savings in the testing program and increased productivity for the testing team. Future work will explore implementing ProTSA in cybersecurity, over-the-air software updates, and autonomous vehicle testing processes. .展开更多
In response to the challenges posed by insufficient real-time performance and suboptimal matching accuracy of traditional feature matching algorithms within automotive panoramic surround view systems,this paper has pr...In response to the challenges posed by insufficient real-time performance and suboptimal matching accuracy of traditional feature matching algorithms within automotive panoramic surround view systems,this paper has proposed a high-performance dimension reduction parallel matching algorithm that integrates Principal Component Analysis(PCA)and Dual-Heap Filtering(DHF).The algorithm employs PCA to map the feature points into the lower-dimensional space and employs the square of Euclidean distance for feature matching,which significantly reduces computational complexity.To ensure the accuracy of feature matching,the algorithm utilizes Dual-Heap Filtering to filter and refine matched point pairs.To further enhance matching speed and make optimal use of computational resources,the algorithm introduces a multi-core parallel matching strategy,greatly elevating the efficiency of feature matching.Compared to Scale-Invariant Feature Transform(SIFT)and Speeded Up Robust Features(SURF),the proposed algorithm reduces matching time by 77%to 80%and concurrently enhances matching accuracy by 5%to 15%.Experimental results demonstrate that the proposed algorithmexhibits outstanding real-time matching performance and accuracy,effectivelymeeting the feature-matching requirements of automotive panoramic surround view systems.展开更多
Free quenching of automotive leaf springs is a new technology that has gradually started to be applied in the industry in China in recent years.Only a few manufacturers are applying it in the industry.Through more tha...Free quenching of automotive leaf springs is a new technology that has gradually started to be applied in the industry in China in recent years.Only a few manufacturers are applying it in the industry.Through more than half a year of on-site practice,the changes in the hot forming of spring plates before free quenching have been explored,and finally a heat treatment process that meets the production requirements of our company has been developed,achieving normal production.展开更多
Engine spark ignition is an important source for diagnosis of engine faults.Based on the waveform of the ignition pattern,a mechanic can guess what may be the potential malfunctioning parts of an engine with his/her e...Engine spark ignition is an important source for diagnosis of engine faults.Based on the waveform of the ignition pattern,a mechanic can guess what may be the potential malfunctioning parts of an engine with his/her experience and handbooks.However,this manual diagnostic method is imprecise because many spark ignition patterns are very similar.Therefore,a diagnosis needs many trials to identify the malfunctioning parts.Meanwhile the mechanic needs to disassemble and assemble the engine parts for verification.To tackle this problem,an intelligent diagnosis system was established based on ignition patterns.First,the captured patterns were normalized and compressed.Then wavelet packet transform(WPT) was employed to extract the representative features of the ignition patterns.Finally,a classification system was constructed by using multi-class support vector machines(SVM) and the extracted features.The classification system can intelligently classify the most likely engine fault so as to reduce the number of diagnosis trials.Experimental results show that SVM produces higher diagnosis accuracy than the traditional multilayer feedforward neural network.This is the first trial on the combination of WPT and SVM to analyze ignition patterns and diagnose automotive engines.展开更多
The very latest technique for impeller manufacture is called semi-solid moulding(SSM).Cummins Turbo Technologies Limited,together with Aluminum Complex Components Inc,developed SSM compressor wheels as a way of achiev...The very latest technique for impeller manufacture is called semi-solid moulding(SSM).Cummins Turbo Technologies Limited,together with Aluminum Complex Components Inc,developed SSM compressor wheels as a way of achieving cost and durability performance somewhere between that of cast and machined from solid(MFS) aluminium alloy wheels.Experimental results show SSM material has a superior microstructure and mechanical properties over cast and comparable to MFS materials.Component testing including durability testing,using accelerated speed cycle tests,proves SSM compressor wheels emerge as being significantly more durable than cast equivalents and approaching that of MFS impellers.Further challenges for semi-solid processing in manufacture of other complex components and other materials in automotive industry in terms of both cost and durability are also discussed.展开更多
Recently automotive nets are adopted to solve increasing problems in automotive electronic systems.Technologies of automotive local area network from CAN and LIN can solve the problems of the increasing of wire bunch ...Recently automotive nets are adopted to solve increasing problems in automotive electronic systems.Technologies of automotive local area network from CAN and LIN can solve the problems of the increasing of wire bunch weight and lack in module installation space.However,the multilayer automotive nets software becomes more and more complex,and the development expense is difficult to predict and to keep in check.In this paper,the modeling method of hierarchical automotive nets and the substitution operation based on object-oriented colored Petri net(OOCPN) are proposed.The OOCPN model which analyzes the software structure and validates the collision mechanism of CAN/LIN bus can speed the automobile system development.First,the subsystems are divided and modeled by object-oriented Petri net(OOPN).According to the sets of message sharing relations,the message ports among them are set and the communication gate transitions are defined.Second,the OOPN model is substituted step by step until the inner objects in the automotive body control modules(BCM) are indivisible and colored by colored Petri net(CPN).And the color subsets mark the node messages for the collision mechanism.Third,the OOCPN model of the automotive body CAN/LIN nets is assembled,which keeps the message sets and the system can be expanded.The proposed model is used to analyze features of information sharing among the objects,and it is also used to describe each subsystem real-time behavior of processing messages and implemental device controllers operating,and puts forward a reasonable software framework for the automotive body control subsystem.The research can help to design the communication model in the automotive body system effectively and provide a convenient and rapid way for developing the logical hierarchy software.展开更多
A novel variable displacement compressor (VDC) for automotive air conditioner (AAC) is introduced, which inherits the advantages of common wobble plate type VDC. It has fewer parts and makes less noise, and instead of...A novel variable displacement compressor (VDC) for automotive air conditioner (AAC) is introduced, which inherits the advantages of common wobble plate type VDC. It has fewer parts and makes less noise, and instead of pneumatic valve the displacement is controlled by electronic control valve. In order to know the control mechanism well and get a good control effect, a mathematical model for the variable displacement mechanism is developed according to the geometrical and kinematical information of the compressor. Using the model, the effect of relevant parameters on variable displace control is estimated. It is helpful to make the optimum decision in the flow control of AAC. As the novel displacement control device, the structure and control rule of electronic control valve is introduced. It can get better effect than the conventional pneumatic valves. And by using this new electronic control device, the optimum systemic control of AAC is available.展开更多
With the global warming of concern,the secondary aluminum stream is becoming an even more important component of aluminum production and is attractive because of its economic and environmental benefits.In this work,re...With the global warming of concern,the secondary aluminum stream is becoming an even more important component of aluminum production and is attractive because of its economic and environmental benefits.In this work,recycling of automotive aluminum is reviewed to highlight environmental benefits of aluminum recycling,use of aluminum alloys in automotive applications,automotive recycling process,and new technologies in aluminum scrap process.Literature survey shows that newly developed techniques such as laser induced breakdown spectroscopy(LIBS) and solid state recycling provide promising alternatives in aluminum scrap process.Compared with conventional remelting and subsequent refinement,solid state recycling utilizing compression and extrusion at room or moderate temperature can result in significant energy savings and higher metal yield.展开更多
China is currently vigorously implementing the“energy conservation and emission reduction”and“dual carbon”strategies.As the most resource-advantaged light metal material in China,Magnesium(Mg)alloy is progressivel...China is currently vigorously implementing the“energy conservation and emission reduction”and“dual carbon”strategies.As the most resource-advantaged light metal material in China,Magnesium(Mg)alloy is progressively expanding its application in automobile,rail transportation,aerospace,medical,and electronic products.Chongqing University,Shanghai Jiaotong University,and Australian National University have conducted extensive research on the preparation,properties,and processes of Mg alloys.In the past 20 years,the proportion of Mg alloy in the automotive industry has gradually expanded,whereas currently the design and development of Mg alloy parts for automobiles has rarely been reported.Thus,the application models and typical parts cases of Mg alloy are summarized mainly from the four systems of the whole vehicle(body system,chassis system,powertrain system,interior,and exterior system).Subsequently,two actual original equipment manufacturers(OEM)cases are used to introduce the development logic of reliable die-cast Mg alloy,including forward design,formability analysis,process design analysis,structural redesign,manufacturing,and testing,aiming to share the methods,processes,and focus of attention of automotive OEMs for developing Mg alloy parts to enhance the confidence and motivation of applying Mg alloy in automotive field.Eventually,the multiple challenges faced by Mg alloy materials are sorted out and how to face these challenges are discussed.National policies and regulations,environmental protection and energy saving,and consumer demand will continue to promote the application of Mg.展开更多
In the automotive industry, lean project</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Ver...In the automotive industry, lean project</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> and innovation creation come to life by being updated under the control of systematic interdisciplinary process flows. The lean product development process that changes the shell, defined under the light of the variables created by the competitive conditions, is today measured by the value flow efficiency and the global market spread of the final product. Consequently, the lean product development approach, which aims to identify and purify all the wastes that do none value or create value to the system or cause burdens in the new product development process, is shaped by step-by-step approvals in the flow. In the main automotive industry company practices within the scope of the research (3 national, 3 international), the beginning of the concept of lean in design is to define and optimize the steps in the product development process under the value stream map. Therefore, the product function for which the customer has paid for, the function of the new product or the physical structure used to meet the needs in question, the comfort, life, experience, innovations of the scope that constitute the new product concept are planned and verified and implemented in the simplified automotive design stages at the beginning of the lean product development process. In this research, initial automotive design objectives and stages are at the focal point of the innovation and added value creation brought by the concept of </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">“</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">lean</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">”</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> approach. The research is modelled on the determination of steps that do not create added value together with the points where the flow circuits’ or stems, the process is devalued, the interdisciplinary holistic studies intensify, the information and delay begin and end in the sequential and simultaneous design validation step transition stages, which are examined under the lean approach. As a visual and virtual tool that enables the elaboration of nominal values such as the total duration of the design verification stages and the influence of interdisciplinary stakeholders or the test level of the product design with the new product added, it reveals the value flow or losses. Hence research;from innovation creation and new product design steps, which constitute the initial stages of the lean product development process, to design verification analysis, the efficiency of the automotive company processes within the scope of the research has been measured by comparing using lean automotive design techniques, methods and concepts.展开更多
In recent years, with attention paid to global environmental problems, there have been requirements for continuous improvement of automobile fuel economy and exhaust gas purification rate. The properties of the ferrit...In recent years, with attention paid to global environmental problems, there have been requirements for continuous improvement of automobile fuel economy and exhaust gas purification rate. The properties of the ferritic stainless steels (FSS) used to make automobile parts have been improved. This paper introduces the construction of automotive exhaust systems and describes their main failure behaviors and corrosion evaluation procedures.展开更多
Defects in kinematic joints can sometimes highly influence the simulation response of the whole multibody system within which these joints are included. For instance, the clearance, the friction, the lubrication and t...Defects in kinematic joints can sometimes highly influence the simulation response of the whole multibody system within which these joints are included. For instance, the clearance, the friction, the lubrication and the flexibility affect the transient behaviour, reduce the component life and produce noise and vibration for classical joints such as prismatics, cylindrics or universal joints.In this work, a new 3D cylindrical joint model which accounts for the clearance, the misalignment and the friction is presented. This formulation has been used to represent the link between the planet gears and the planet carrier in an automotive differential model. C 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1301303]展开更多
The multi-impact characteristics and failure mechanism of two kinds of automotive engine chain made in China are studied through engine assembly and road-drive tests. The worn surface morphologies of rubbing area betw...The multi-impact characteristics and failure mechanism of two kinds of automotive engine chain made in China are studied through engine assembly and road-drive tests. The worn surface morphologies of rubbing area between pin, bush and roller are also analyzed based on scanning electron microscope. The results show that the main wear mechanism of automotive engine chain is fatigue wear, and its failure mechanism is the forming, extending and flaking of cracks on top layer of pin and bush. In addition, the material, hot-treatment method and shaping technique for roller have a great influence upon the resistance to multi-impact. Ensuring sufficient strength and plasticity of roller, as well as adopting suitable shaping technique are the effective method to increase its resistance to multi-impact.展开更多
he design verification steps that take place in today’s automotive industry, which constitute the values of each successive or simultaneous phase in the new product development process, create a complex structure wit...he design verification steps that take place in today’s automotive industry, which constitute the values of each successive or simultaneous phase in the new product development process, create a complex structure with the inclusion of each new technology and discipline. Therefore, step by step, each design verification phase definition in the flow contains important phase transition measurements or approval tolerances that ensure the simplicity and continuity of vehicle development processes. In addition, classification of design verification stages within the framework of this study or evaluation in two classes (static and dynamic) is a new approach, but it is a synthesis with the analysis of the new product development process. The vehicle’s basic structure, which constitutes the ergonomic and functional requirements of the vehicle in a static environment, takes into account the dynamic environment variables with crash or accident tests. Increasing new technology adaptations in the automotive industry have changed the new product development process that performs this function structurally and created the concept of design verification under consecutive or simultaneous process simplicity. From the autonomous driving to the use of alternative energy, possible accident scenarios and design verification phase transitions in the integration of parts and systems of the newly developed vehicle create a new structure that models and directs the lean product development process especially in the automotive industry in the coming days. In the lean product development process that takes place in the automotive industry, the design verification transition steps or the approval-control analysis of the development stages, which form a new and effective approach, are re-modeling the entire flow. Therefore, successful execution of design verification steps used in the control of new interdisciplinary product development phase transitions provides value creation.?Within the scope of this study, the effectiveness of the static and dynamic design verification steps, which are carried out in 5 global automotive companies included in the research, which constitute the stage transitions of the new product development process, has been measured. Apart from the design verification transition stages, the process variables that differ among the automotive companies involved in the research are excluded from the scope of this study. In other words, in field researches in the automotive industry, new vehicle design steps or basic engineering steps in the new product development process steps, while creating independent fixed variables, interdisciplinary collaborations, static and dynamic design verification transition stages they perform, or their sequence in the basic flow, is accepted as a dependent variable. Therefore, in the study, the positive effect of the automotive companies that included the static and dynamic design verification phase transition approvals in the lean product development process was investigated. Under the comparative analysis structure of the research, the effect of automotive companies, which accept international vehicle specifications as static design verification input, on market performance has been examined in depth. The detailed depth in the comparison analysis conducted under the second field studies of the study is due to the prediction of dynamic design verification stages to provide a high impact on the market performance, according to the static verification analysis. The new product development stages of the dependent variables were fixed and the flow-oriented?“effect”?of the independent variables in the basic process influenced by the design verification activities was analyzed under the new automotive industry company comparisons. In addition, the impact of the automotive design activities that make up the comparison analysis of the research on the scope of the lean product development stage and its effect on the basic process flow has been demonstrated competition-oriented. Therefore, sub-variables, options, criteria, results, which form a defined comparison problem, create basic test values that affect the problem.展开更多
The high-speed multi-cycle impact and speed, load fluctuant characteristics of a kind of narrow-width automotive engine oil-pump chain 06BN-1 are studied through engine assembly and road-drive tests to satisfy the lig...The high-speed multi-cycle impact and speed, load fluctuant characteristics of a kind of narrow-width automotive engine oil-pump chain 06BN-1 are studied through engine assembly and road-drive tests to satisfy the light-weight demand of engine. The worn surface morphologies of rubbing area between pin, bush and roller are also analyzed based on scanning electron microscope. The results show that the main wear mechanism of automotive engine oil-pump chain is fatigue wear, and it's failure mechanism is the forming, extending and flaking of cracks on top layer of pin and bush. Pin and bush both occurred cycle-soften phenomenon, and roller occurred cycle-harden. Fretting wear is one of the most important "fall to pieces" failure causes of automotive chain. Ensuring sufficient strength and plasticity of roller, as well as adopting suitable shaping technology are the effective methods to increase its resistance to multi-cycle impact.展开更多
A hybrid conceptual design approach was introduced in this study to develop a conceptual design of oil palm polymer composite automotive crash box(ACB). A combination of theory of inventive problem solving(TRIZ), morp...A hybrid conceptual design approach was introduced in this study to develop a conceptual design of oil palm polymer composite automotive crash box(ACB). A combination of theory of inventive problem solving(TRIZ), morphological charts and biomimetics was applied where the foremost requirements in terms of the material characteristics, function specifications, force identification, root cause analysis, geometry profile and design selection criteria were considered. The strategy was to use creations of nature to inspire five innovative conceptual designs of the ACB structure and the AHP method was applied to perform the pairwise analysis of selecting the best ACB conceptual design. A new conceptual design for a composite ACB was conceived bearing in mind the properties of natural fibre, unlike those of conventional materials such as steel alloys and aluminium alloys. The design with the highest ranking(26.6 %) was chosen as the final conceptual design, which was the one with a honeycomb structure for the outermost profile, reinforced with a spider web structure inside the part, supported by fibre foam structure extracted from the woodpecker sponge tissue at the centre to maximize the energy absorption capability. The new design could solve the problem of bending collapse which is a major cause of failure to absorb maximum impact energy for ACB during collision. However, the final conceptual design will still need several modifications for production and assembly purposes, which will be completed in a further study.展开更多
In this study, it is aimed to determine the ranking importance levels of the stages to be taken into consideration for new product development on a global scale in the automotive design process. New product design act...In this study, it is aimed to determine the ranking importance levels of the stages to be taken into consideration for new product development on a global scale in the automotive design process. New product design activity and stage-gate process differences between local automotive firms (serial production factory and stage-gate department in Turkey) and global automotive companies (serial production factory and stage-gate department in Turkey) are examined comparatively in the research area. In the automotive industry, which has been developing for a century, the question of how the local company products operating in the last sixty years have not been able to spread globally or how to develop global products is the background question of the research. For this purpose, one on one interviews were held with the managers of 3 national and 3 international automotive companies, who worked in the same region and who had previously designed a new vehicle, with design and product development departments.?According to?the data obtained by the AHP (Analytic Hierarchy Process) in the automotive design process, the importance of the criteria that should be taken into account for global product development has revealed. According to the results of the study, it was found that design validation stages were the most important globalization criterion in automotive design process as a new study area. In the comprehensive survey of the study, no other publication has been encountered to measure or evaluate the stages in the automotive design and new product development process in other sectors, including the vehicle industry. As in every industry sector, in the automotive industry, with the new product companies provide market development or competitive advantage. The new product is the life channel of a company and in the realization of this new vehicle;the disciplines of the automotive industry are formed by a hundred years of experience.展开更多
With the development of automated driving vehicles, more and more vehicles will be fitted with more than one automotive radars, and the radar mutual interference will become very significant. Vehicle to everything (V2...With the development of automated driving vehicles, more and more vehicles will be fitted with more than one automotive radars, and the radar mutual interference will become very significant. Vehicle to everything (V2X) communication is a potential way for coordinating automotive radars and reduce the mutual interference. In this paper, we analyze the positional relation of the two radars that interfere with each other, and evaluate the mutual interference for different types of automotive radars based on Poisson point process (PPP). We also propose a centralized framework and the corresponding algorithm, which relies on V2X communication systems to allocate the spectrum resources for automotive radars to minimize the interference. The minimum spectrum resources required for zero-interference are analyzed for different cases. Simulation results validate the analysis and show that the proposed framework can achieve near-zero-interference with the minimum spectrum resources.展开更多
Samples of the cross section microstructures of galvannealed steel sheets that lack alloying were analyzed. X-ray diffraction (XRD) tests were carried out. The study discovers that the deficit of alloying was higher...Samples of the cross section microstructures of galvannealed steel sheets that lack alloying were analyzed. X-ray diffraction (XRD) tests were carried out. The study discovers that the deficit of alloying was higher on both sides of the steel sheet when compared to the center and the thickness of the coating on the sides was also higher than the center. The results of the XRD tests demonstrate that the microstructure of the coating with a lack of alloy is mainly composed of zinc,ζ and δ. They also indicate that the lack of alloying is mainly due to a lower galvannealing temperature and thicker coating. It is shown by the optical micrographs of coating that the δ phase forms first in a discontinuous manner at the interface and then rapidly pushes towards the coating and enlarges.展开更多
文摘This study evaluates the development of a testing process for the automotive software domain, highlighting challenges stemming from the absence of adequate processes. The research demonstrates the application of Design Science Research methodology in developing, an automotive software testing process—ProTSA, using six functional testing modules. Additionally, the study evaluates the benefits of implementing ProTSA in a specific Original Equipment Manufacturer (OEM) using an experimental single-case approach with industry professionals’ participation through a survey. The study concludes that combining testing techniques with effective communication and alignment is crucial for enhancing software quality. Furthermore, survey data indicates that implementing ProTSA leads to productivity gains by initiating tests early, resulting in time savings in the testing program and increased productivity for the testing team. Future work will explore implementing ProTSA in cybersecurity, over-the-air software updates, and autonomous vehicle testing processes. .
基金the National Natural Science Foundation of China(61803206)the Key R&D Program of Jiangsu Province(BE2022053-2)the Nanjing Forestry University Youth Science and Technology Innovation Fund(CX2018004)for partly funding this project.
文摘In response to the challenges posed by insufficient real-time performance and suboptimal matching accuracy of traditional feature matching algorithms within automotive panoramic surround view systems,this paper has proposed a high-performance dimension reduction parallel matching algorithm that integrates Principal Component Analysis(PCA)and Dual-Heap Filtering(DHF).The algorithm employs PCA to map the feature points into the lower-dimensional space and employs the square of Euclidean distance for feature matching,which significantly reduces computational complexity.To ensure the accuracy of feature matching,the algorithm utilizes Dual-Heap Filtering to filter and refine matched point pairs.To further enhance matching speed and make optimal use of computational resources,the algorithm introduces a multi-core parallel matching strategy,greatly elevating the efficiency of feature matching.Compared to Scale-Invariant Feature Transform(SIFT)and Speeded Up Robust Features(SURF),the proposed algorithm reduces matching time by 77%to 80%and concurrently enhances matching accuracy by 5%to 15%.Experimental results demonstrate that the proposed algorithmexhibits outstanding real-time matching performance and accuracy,effectivelymeeting the feature-matching requirements of automotive panoramic surround view systems.
文摘Free quenching of automotive leaf springs is a new technology that has gradually started to be applied in the industry in China in recent years.Only a few manufacturers are applying it in the industry.Through more than half a year of on-site practice,the changes in the hot forming of spring plates before free quenching have been explored,and finally a heat treatment process that meets the production requirements of our company has been developed,achieving normal production.
基金supported by University of Macao Research Grant,China (Grant No. RG057/08-09S/VCM/FST, Grant No. UL011/09-Y1/ EME/ WPK01/FST)
文摘Engine spark ignition is an important source for diagnosis of engine faults.Based on the waveform of the ignition pattern,a mechanic can guess what may be the potential malfunctioning parts of an engine with his/her experience and handbooks.However,this manual diagnostic method is imprecise because many spark ignition patterns are very similar.Therefore,a diagnosis needs many trials to identify the malfunctioning parts.Meanwhile the mechanic needs to disassemble and assemble the engine parts for verification.To tackle this problem,an intelligent diagnosis system was established based on ignition patterns.First,the captured patterns were normalized and compressed.Then wavelet packet transform(WPT) was employed to extract the representative features of the ignition patterns.Finally,a classification system was constructed by using multi-class support vector machines(SVM) and the extracted features.The classification system can intelligently classify the most likely engine fault so as to reduce the number of diagnosis trials.Experimental results show that SVM produces higher diagnosis accuracy than the traditional multilayer feedforward neural network.This is the first trial on the combination of WPT and SVM to analyze ignition patterns and diagnose automotive engines.
文摘The very latest technique for impeller manufacture is called semi-solid moulding(SSM).Cummins Turbo Technologies Limited,together with Aluminum Complex Components Inc,developed SSM compressor wheels as a way of achieving cost and durability performance somewhere between that of cast and machined from solid(MFS) aluminium alloy wheels.Experimental results show SSM material has a superior microstructure and mechanical properties over cast and comparable to MFS materials.Component testing including durability testing,using accelerated speed cycle tests,proves SSM compressor wheels emerge as being significantly more durable than cast equivalents and approaching that of MFS impellers.Further challenges for semi-solid processing in manufacture of other complex components and other materials in automotive industry in terms of both cost and durability are also discussed.
基金supported by National Natural Science Foundation of China (Grant No. 60873003)
文摘Recently automotive nets are adopted to solve increasing problems in automotive electronic systems.Technologies of automotive local area network from CAN and LIN can solve the problems of the increasing of wire bunch weight and lack in module installation space.However,the multilayer automotive nets software becomes more and more complex,and the development expense is difficult to predict and to keep in check.In this paper,the modeling method of hierarchical automotive nets and the substitution operation based on object-oriented colored Petri net(OOCPN) are proposed.The OOCPN model which analyzes the software structure and validates the collision mechanism of CAN/LIN bus can speed the automobile system development.First,the subsystems are divided and modeled by object-oriented Petri net(OOPN).According to the sets of message sharing relations,the message ports among them are set and the communication gate transitions are defined.Second,the OOPN model is substituted step by step until the inner objects in the automotive body control modules(BCM) are indivisible and colored by colored Petri net(CPN).And the color subsets mark the node messages for the collision mechanism.Third,the OOCPN model of the automotive body CAN/LIN nets is assembled,which keeps the message sets and the system can be expanded.The proposed model is used to analyze features of information sharing among the objects,and it is also used to describe each subsystem real-time behavior of processing messages and implemental device controllers operating,and puts forward a reasonable software framework for the automotive body control subsystem.The research can help to design the communication model in the automotive body system effectively and provide a convenient and rapid way for developing the logical hierarchy software.
文摘A novel variable displacement compressor (VDC) for automotive air conditioner (AAC) is introduced, which inherits the advantages of common wobble plate type VDC. It has fewer parts and makes less noise, and instead of pneumatic valve the displacement is controlled by electronic control valve. In order to know the control mechanism well and get a good control effect, a mathematical model for the variable displacement mechanism is developed according to the geometrical and kinematical information of the compressor. Using the model, the effect of relevant parameters on variable displace control is estimated. It is helpful to make the optimum decision in the flow control of AAC. As the novel displacement control device, the structure and control rule of electronic control valve is introduced. It can get better effect than the conventional pneumatic valves. And by using this new electronic control device, the optimum systemic control of AAC is available.
基金Project(FRINAT) supported by the Research Council of Norway (RCN)
文摘With the global warming of concern,the secondary aluminum stream is becoming an even more important component of aluminum production and is attractive because of its economic and environmental benefits.In this work,recycling of automotive aluminum is reviewed to highlight environmental benefits of aluminum recycling,use of aluminum alloys in automotive applications,automotive recycling process,and new technologies in aluminum scrap process.Literature survey shows that newly developed techniques such as laser induced breakdown spectroscopy(LIBS) and solid state recycling provide promising alternatives in aluminum scrap process.Compared with conventional remelting and subsequent refinement,solid state recycling utilizing compression and extrusion at room or moderate temperature can result in significant energy savings and higher metal yield.
基金supported partly by the Fundamental Research Funds for Central Universities(No.06500203 and No.00007735).
文摘China is currently vigorously implementing the“energy conservation and emission reduction”and“dual carbon”strategies.As the most resource-advantaged light metal material in China,Magnesium(Mg)alloy is progressively expanding its application in automobile,rail transportation,aerospace,medical,and electronic products.Chongqing University,Shanghai Jiaotong University,and Australian National University have conducted extensive research on the preparation,properties,and processes of Mg alloys.In the past 20 years,the proportion of Mg alloy in the automotive industry has gradually expanded,whereas currently the design and development of Mg alloy parts for automobiles has rarely been reported.Thus,the application models and typical parts cases of Mg alloy are summarized mainly from the four systems of the whole vehicle(body system,chassis system,powertrain system,interior,and exterior system).Subsequently,two actual original equipment manufacturers(OEM)cases are used to introduce the development logic of reliable die-cast Mg alloy,including forward design,formability analysis,process design analysis,structural redesign,manufacturing,and testing,aiming to share the methods,processes,and focus of attention of automotive OEMs for developing Mg alloy parts to enhance the confidence and motivation of applying Mg alloy in automotive field.Eventually,the multiple challenges faced by Mg alloy materials are sorted out and how to face these challenges are discussed.National policies and regulations,environmental protection and energy saving,and consumer demand will continue to promote the application of Mg.
文摘In the automotive industry, lean project</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> and innovation creation come to life by being updated under the control of systematic interdisciplinary process flows. The lean product development process that changes the shell, defined under the light of the variables created by the competitive conditions, is today measured by the value flow efficiency and the global market spread of the final product. Consequently, the lean product development approach, which aims to identify and purify all the wastes that do none value or create value to the system or cause burdens in the new product development process, is shaped by step-by-step approvals in the flow. In the main automotive industry company practices within the scope of the research (3 national, 3 international), the beginning of the concept of lean in design is to define and optimize the steps in the product development process under the value stream map. Therefore, the product function for which the customer has paid for, the function of the new product or the physical structure used to meet the needs in question, the comfort, life, experience, innovations of the scope that constitute the new product concept are planned and verified and implemented in the simplified automotive design stages at the beginning of the lean product development process. In this research, initial automotive design objectives and stages are at the focal point of the innovation and added value creation brought by the concept of </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">“</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">lean</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">”</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> approach. The research is modelled on the determination of steps that do not create added value together with the points where the flow circuits’ or stems, the process is devalued, the interdisciplinary holistic studies intensify, the information and delay begin and end in the sequential and simultaneous design validation step transition stages, which are examined under the lean approach. As a visual and virtual tool that enables the elaboration of nominal values such as the total duration of the design verification stages and the influence of interdisciplinary stakeholders or the test level of the product design with the new product added, it reveals the value flow or losses. Hence research;from innovation creation and new product design steps, which constitute the initial stages of the lean product development process, to design verification analysis, the efficiency of the automotive company processes within the scope of the research has been measured by comparing using lean automotive design techniques, methods and concepts.
文摘In recent years, with attention paid to global environmental problems, there have been requirements for continuous improvement of automobile fuel economy and exhaust gas purification rate. The properties of the ferritic stainless steels (FSS) used to make automobile parts have been improved. This paper introduces the construction of automotive exhaust systems and describes their main failure behaviors and corrosion evaluation procedures.
基金the Belgian National Fund for Scientific research (FRIA) for its financial support
文摘Defects in kinematic joints can sometimes highly influence the simulation response of the whole multibody system within which these joints are included. For instance, the clearance, the friction, the lubrication and the flexibility affect the transient behaviour, reduce the component life and produce noise and vibration for classical joints such as prismatics, cylindrics or universal joints.In this work, a new 3D cylindrical joint model which accounts for the clearance, the misalignment and the friction is presented. This formulation has been used to represent the link between the planet gears and the planet carrier in an automotive differential model. C 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1301303]
基金This project is supported by National Innovation Foundation for TechnologyBased Firms, China (No.01C26213300872).
文摘The multi-impact characteristics and failure mechanism of two kinds of automotive engine chain made in China are studied through engine assembly and road-drive tests. The worn surface morphologies of rubbing area between pin, bush and roller are also analyzed based on scanning electron microscope. The results show that the main wear mechanism of automotive engine chain is fatigue wear, and its failure mechanism is the forming, extending and flaking of cracks on top layer of pin and bush. In addition, the material, hot-treatment method and shaping technique for roller have a great influence upon the resistance to multi-impact. Ensuring sufficient strength and plasticity of roller, as well as adopting suitable shaping technique are the effective method to increase its resistance to multi-impact.
文摘he design verification steps that take place in today’s automotive industry, which constitute the values of each successive or simultaneous phase in the new product development process, create a complex structure with the inclusion of each new technology and discipline. Therefore, step by step, each design verification phase definition in the flow contains important phase transition measurements or approval tolerances that ensure the simplicity and continuity of vehicle development processes. In addition, classification of design verification stages within the framework of this study or evaluation in two classes (static and dynamic) is a new approach, but it is a synthesis with the analysis of the new product development process. The vehicle’s basic structure, which constitutes the ergonomic and functional requirements of the vehicle in a static environment, takes into account the dynamic environment variables with crash or accident tests. Increasing new technology adaptations in the automotive industry have changed the new product development process that performs this function structurally and created the concept of design verification under consecutive or simultaneous process simplicity. From the autonomous driving to the use of alternative energy, possible accident scenarios and design verification phase transitions in the integration of parts and systems of the newly developed vehicle create a new structure that models and directs the lean product development process especially in the automotive industry in the coming days. In the lean product development process that takes place in the automotive industry, the design verification transition steps or the approval-control analysis of the development stages, which form a new and effective approach, are re-modeling the entire flow. Therefore, successful execution of design verification steps used in the control of new interdisciplinary product development phase transitions provides value creation.?Within the scope of this study, the effectiveness of the static and dynamic design verification steps, which are carried out in 5 global automotive companies included in the research, which constitute the stage transitions of the new product development process, has been measured. Apart from the design verification transition stages, the process variables that differ among the automotive companies involved in the research are excluded from the scope of this study. In other words, in field researches in the automotive industry, new vehicle design steps or basic engineering steps in the new product development process steps, while creating independent fixed variables, interdisciplinary collaborations, static and dynamic design verification transition stages they perform, or their sequence in the basic flow, is accepted as a dependent variable. Therefore, in the study, the positive effect of the automotive companies that included the static and dynamic design verification phase transition approvals in the lean product development process was investigated. Under the comparative analysis structure of the research, the effect of automotive companies, which accept international vehicle specifications as static design verification input, on market performance has been examined in depth. The detailed depth in the comparison analysis conducted under the second field studies of the study is due to the prediction of dynamic design verification stages to provide a high impact on the market performance, according to the static verification analysis. The new product development stages of the dependent variables were fixed and the flow-oriented?“effect”?of the independent variables in the basic process influenced by the design verification activities was analyzed under the new automotive industry company comparisons. In addition, the impact of the automotive design activities that make up the comparison analysis of the research on the scope of the lean product development stage and its effect on the basic process flow has been demonstrated competition-oriented. Therefore, sub-variables, options, criteria, results, which form a defined comparison problem, create basic test values that affect the problem.
基金This project is supported by National Innovation Foundation for Technology Based Firms, China (No. 01C26213300872)
文摘The high-speed multi-cycle impact and speed, load fluctuant characteristics of a kind of narrow-width automotive engine oil-pump chain 06BN-1 are studied through engine assembly and road-drive tests to satisfy the light-weight demand of engine. The worn surface morphologies of rubbing area between pin, bush and roller are also analyzed based on scanning electron microscope. The results show that the main wear mechanism of automotive engine oil-pump chain is fatigue wear, and it's failure mechanism is the forming, extending and flaking of cracks on top layer of pin and bush. Pin and bush both occurred cycle-soften phenomenon, and roller occurred cycle-harden. Fretting wear is one of the most important "fall to pieces" failure causes of automotive chain. Ensuring sufficient strength and plasticity of roller, as well as adopting suitable shaping technology are the effective methods to increase its resistance to multi-cycle impact.
基金Project(6369107)supported by the Ministry of Higher Education,Malaysia
文摘A hybrid conceptual design approach was introduced in this study to develop a conceptual design of oil palm polymer composite automotive crash box(ACB). A combination of theory of inventive problem solving(TRIZ), morphological charts and biomimetics was applied where the foremost requirements in terms of the material characteristics, function specifications, force identification, root cause analysis, geometry profile and design selection criteria were considered. The strategy was to use creations of nature to inspire five innovative conceptual designs of the ACB structure and the AHP method was applied to perform the pairwise analysis of selecting the best ACB conceptual design. A new conceptual design for a composite ACB was conceived bearing in mind the properties of natural fibre, unlike those of conventional materials such as steel alloys and aluminium alloys. The design with the highest ranking(26.6 %) was chosen as the final conceptual design, which was the one with a honeycomb structure for the outermost profile, reinforced with a spider web structure inside the part, supported by fibre foam structure extracted from the woodpecker sponge tissue at the centre to maximize the energy absorption capability. The new design could solve the problem of bending collapse which is a major cause of failure to absorb maximum impact energy for ACB during collision. However, the final conceptual design will still need several modifications for production and assembly purposes, which will be completed in a further study.
文摘In this study, it is aimed to determine the ranking importance levels of the stages to be taken into consideration for new product development on a global scale in the automotive design process. New product design activity and stage-gate process differences between local automotive firms (serial production factory and stage-gate department in Turkey) and global automotive companies (serial production factory and stage-gate department in Turkey) are examined comparatively in the research area. In the automotive industry, which has been developing for a century, the question of how the local company products operating in the last sixty years have not been able to spread globally or how to develop global products is the background question of the research. For this purpose, one on one interviews were held with the managers of 3 national and 3 international automotive companies, who worked in the same region and who had previously designed a new vehicle, with design and product development departments.?According to?the data obtained by the AHP (Analytic Hierarchy Process) in the automotive design process, the importance of the criteria that should be taken into account for global product development has revealed. According to the results of the study, it was found that design validation stages were the most important globalization criterion in automotive design process as a new study area. In the comprehensive survey of the study, no other publication has been encountered to measure or evaluate the stages in the automotive design and new product development process in other sectors, including the vehicle industry. As in every industry sector, in the automotive industry, with the new product companies provide market development or competitive advantage. The new product is the life channel of a company and in the realization of this new vehicle;the disciplines of the automotive industry are formed by a hundred years of experience.
基金support by China Information Communication Technologies Group Corporationsupported in part by Chinese Ministry of Education-China Mobile Communication Corporation Research Fund under Grant MCM20170101the European Union’s Horizon 2020 research and innovation programme under the Marie Skldowska-Curie Grant Agreement No.793345
文摘With the development of automated driving vehicles, more and more vehicles will be fitted with more than one automotive radars, and the radar mutual interference will become very significant. Vehicle to everything (V2X) communication is a potential way for coordinating automotive radars and reduce the mutual interference. In this paper, we analyze the positional relation of the two radars that interfere with each other, and evaluate the mutual interference for different types of automotive radars based on Poisson point process (PPP). We also propose a centralized framework and the corresponding algorithm, which relies on V2X communication systems to allocate the spectrum resources for automotive radars to minimize the interference. The minimum spectrum resources required for zero-interference are analyzed for different cases. Simulation results validate the analysis and show that the proposed framework can achieve near-zero-interference with the minimum spectrum resources.
文摘Samples of the cross section microstructures of galvannealed steel sheets that lack alloying were analyzed. X-ray diffraction (XRD) tests were carried out. The study discovers that the deficit of alloying was higher on both sides of the steel sheet when compared to the center and the thickness of the coating on the sides was also higher than the center. The results of the XRD tests demonstrate that the microstructure of the coating with a lack of alloy is mainly composed of zinc,ζ and δ. They also indicate that the lack of alloying is mainly due to a lower galvannealing temperature and thicker coating. It is shown by the optical micrographs of coating that the δ phase forms first in a discontinuous manner at the interface and then rapidly pushes towards the coating and enlarges.