This paper researches on a kind of control architecture for autonomous undelwater vehicle (AUV). After describing the hybrid property of the AUV control system, we present the hierarchical AUV control architecture. ...This paper researches on a kind of control architecture for autonomous undelwater vehicle (AUV). After describing the hybrid property of the AUV control system, we present the hierarchical AUV control architecture. The architecture is organized in three layers: mission layer, task layer and execution layer. State supervisor and task coordinator are two key modules handling discrete events, so we describe these two modules in detail. Finally, we carried out a series of tests to verify this architecture The test results show that the AUV can perform autonomous missions effectively and safely. We can conclude the control architecture is valid and practical.展开更多
Oceanographic survey, or other similar applications should be the applications of multiple AUVs. In this paper, the skill & simulation based hybrid control architecture (S2BHCA) as the controller's design refe...Oceanographic survey, or other similar applications should be the applications of multiple AUVs. In this paper, the skill & simulation based hybrid control architecture (S2BHCA) as the controller's design reference was proposed. It is a multi-robot cooperation oriented intelligent control architecture based on hybrid ideas. The S2 BHCA attempts to incorporate the virtues of the reactive controller and of the deliberative controller by introducing the concept of the "skill". The additional online task simulation ability for cooperation is supported, too. As an application, a multiple AUV control system was developed with three "skills" for the MCM mission including two different cooperative tasks. The simulation and the sea trials show that simple task expression, fast reaction and better cooperation support can be achieved by realizing the AUV controller based on the S2 BHCA.展开更多
A great number of pipelines in China are in unsatisfactory condition and faced with problems of corrosion and cracking,but there are very few approaches for underwater pipeline detection.Pipeline detection autonomous ...A great number of pipelines in China are in unsatisfactory condition and faced with problems of corrosion and cracking,but there are very few approaches for underwater pipeline detection.Pipeline detection autonomous underwater vehicle(PDAUV) is hereby designed to solve these problems when working with advanced optical,acoustical and electrical sensors for underwater pipeline detection.PDAUV is a test bed that not only examines the logical rationality of the program,effectiveness of the hardware architecture,accuracy of the software interface protocol as well as the reliability and stability of the control system but also verifies the effectiveness of the control system in tank experiments and sea trials.The motion control system of PDAUV,including both the hardware and software architectures,is introduced in this work.The software module and information flow of the motion control system of PDAUV and a novel neural network-based control(NNC) are also covered.Besides,a real-time identification method based on neural network is used to realize system identification.The tank experiments and sea trials are carried out to verify the feasibility and capability of PDAUV control system to complete underwater pipeline detection task.展开更多
SIN(Space Information Network)has recently emerged as a promising approach to solving the collaboration difficulty among current space programs.However,because of the SIN’s large scale,high component complexity,and d...SIN(Space Information Network)has recently emerged as a promising approach to solving the collaboration difficulty among current space programs.However,because of the SIN’s large scale,high component complexity,and dynamic characteristics,designing a proper SIN architecture is challenging.Firstly,we propose a novel SIN architecture,which is composed of GEO(Geostationary Earth Orbit)satellites as backbone network nodes,LEO(Low Earth Orbit)or other types of satellites as enhanced coverage nodes,and high-altitude platforms to meet the service requirements of emergency or hot-spot applications.Unlike most existing studies,the proposed architecture is AS(Autonomous-System)based.We decouple the complex SIN into simpler sub-networks using a hierarchical AS model.Then,we propose a topology control algorithm to minimize the time delay among sub-AS networks.We prove that the proposed algorithm achieves logical k-connectivity provided that the original physical topology has k-connectivity.Simulation results validate the theoretic analysis and effectiveness of the algorithm.展开更多
Multicast capability, including multicast address and multicast rout- ing mechanisms, at the network layer is necessary in order to reduce the band- width requirements of multiparty, multicast applications. Based on h...Multicast capability, including multicast address and multicast rout- ing mechanisms, at the network layer is necessary in order to reduce the band- width requirements of multiparty, multicast applications. Based on hierarchical au- tonomous structure in accordance with the self-organization topologies of Internet, the paper puts forward a multicast address management scheme that is shown to be robust and scalable. Connection control hierarchy (CCH) based on master/slave re- lationship and a simple efficient building algorithm of multi-point connection is also built. The paper also describes the normal operations of multicast address manage- ment and multi-point connection controller. Through simulation experiment, HAM, CM and DDM of Multicast Address Allocation are compared. HAM integrates the merits of CM and DDM, which is efficient as a whole, robust and scalable. CCH raises the efficiency of connection control, and is highly robust, flexible and scalable.展开更多
文摘This paper researches on a kind of control architecture for autonomous undelwater vehicle (AUV). After describing the hybrid property of the AUV control system, we present the hierarchical AUV control architecture. The architecture is organized in three layers: mission layer, task layer and execution layer. State supervisor and task coordinator are two key modules handling discrete events, so we describe these two modules in detail. Finally, we carried out a series of tests to verify this architecture The test results show that the AUV can perform autonomous missions effectively and safely. We can conclude the control architecture is valid and practical.
文摘Oceanographic survey, or other similar applications should be the applications of multiple AUVs. In this paper, the skill & simulation based hybrid control architecture (S2BHCA) as the controller's design reference was proposed. It is a multi-robot cooperation oriented intelligent control architecture based on hybrid ideas. The S2 BHCA attempts to incorporate the virtues of the reactive controller and of the deliberative controller by introducing the concept of the "skill". The additional online task simulation ability for cooperation is supported, too. As an application, a multiple AUV control system was developed with three "skills" for the MCM mission including two different cooperative tasks. The simulation and the sea trials show that simple task expression, fast reaction and better cooperation support can be achieved by realizing the AUV controller based on the S2 BHCA.
基金Project(2011AA09A106)supported by the Hi-tech Research and Development Program of ChinaProject(51179035)supported by the National Natural Science Foundation of ChinaProject(2015ZX01041101)supported by Major National Science and Technology of China
文摘A great number of pipelines in China are in unsatisfactory condition and faced with problems of corrosion and cracking,but there are very few approaches for underwater pipeline detection.Pipeline detection autonomous underwater vehicle(PDAUV) is hereby designed to solve these problems when working with advanced optical,acoustical and electrical sensors for underwater pipeline detection.PDAUV is a test bed that not only examines the logical rationality of the program,effectiveness of the hardware architecture,accuracy of the software interface protocol as well as the reliability and stability of the control system but also verifies the effectiveness of the control system in tank experiments and sea trials.The motion control system of PDAUV,including both the hardware and software architectures,is introduced in this work.The software module and information flow of the motion control system of PDAUV and a novel neural network-based control(NNC) are also covered.Besides,a real-time identification method based on neural network is used to realize system identification.The tank experiments and sea trials are carried out to verify the feasibility and capability of PDAUV control system to complete underwater pipeline detection task.
基金supported by the National Natural Science Foundation of China(Nos.91338201,91438109,61401507).
文摘SIN(Space Information Network)has recently emerged as a promising approach to solving the collaboration difficulty among current space programs.However,because of the SIN’s large scale,high component complexity,and dynamic characteristics,designing a proper SIN architecture is challenging.Firstly,we propose a novel SIN architecture,which is composed of GEO(Geostationary Earth Orbit)satellites as backbone network nodes,LEO(Low Earth Orbit)or other types of satellites as enhanced coverage nodes,and high-altitude platforms to meet the service requirements of emergency or hot-spot applications.Unlike most existing studies,the proposed architecture is AS(Autonomous-System)based.We decouple the complex SIN into simpler sub-networks using a hierarchical AS model.Then,we propose a topology control algorithm to minimize the time delay among sub-AS networks.We prove that the proposed algorithm achieves logical k-connectivity provided that the original physical topology has k-connectivity.Simulation results validate the theoretic analysis and effectiveness of the algorithm.
文摘Multicast capability, including multicast address and multicast rout- ing mechanisms, at the network layer is necessary in order to reduce the band- width requirements of multiparty, multicast applications. Based on hierarchical au- tonomous structure in accordance with the self-organization topologies of Internet, the paper puts forward a multicast address management scheme that is shown to be robust and scalable. Connection control hierarchy (CCH) based on master/slave re- lationship and a simple efficient building algorithm of multi-point connection is also built. The paper also describes the normal operations of multicast address manage- ment and multi-point connection controller. Through simulation experiment, HAM, CM and DDM of Multicast Address Allocation are compared. HAM integrates the merits of CM and DDM, which is efficient as a whole, robust and scalable. CCH raises the efficiency of connection control, and is highly robust, flexible and scalable.