This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles in...This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments,which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults,an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer,which only depends on measurable position information of the autonomous surface vehicle,is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism,a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results,the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally,the comparison results through simulations are given to verify the effectiveness of the proposed method.展开更多
This paper presents a novel dynamic A^*path finding algorithm and 3D lidar based local obstacle avoidance strategy for an autonomous vehicle.3D point cloud data is collected and analyzed in real time.Local obstacles a...This paper presents a novel dynamic A^*path finding algorithm and 3D lidar based local obstacle avoidance strategy for an autonomous vehicle.3D point cloud data is collected and analyzed in real time.Local obstacles are detected online and a 2D local obstacle grid map is constructed at 10 Hz/s.The A^*path finding algorithm is employed to generate a local path in this local obstacle grid map by considering both the target position and obstacles.The vehicle avoids obstacles under the guidance of the generated local path.Experiment results have shown the effectiveness of the obstacle avoidance navigation algorithm proposed.展开更多
With the improvement of automobile ownership in recent years,the incidence of traffic accidents constantly increases and requirements on the security of automobiles become increasingly higher.As science and technology...With the improvement of automobile ownership in recent years,the incidence of traffic accidents constantly increases and requirements on the security of automobiles become increasingly higher.As science and technology develops constantly,the development of automobile automatic obstacle avoidance and cruise system accelerates gradually,and the requirement on distance control becomes stricter.Automobile automatic obstacle avoidance and cruise system can determine the conditions of automobiles and roads using sensing technology,automatically adopt measures to control automobile after discovering road safety hazards,thus to reduce the incidence of traffic accidents.To prevent accidental collision of automobile which are installed with automatic obstacle avoidance and cruise system,active brake should be controlled during driving.This study put forward a neural network based proportional-integral-derivative(PID)control algorithm.The active brake of automobiles was effectively controlled using the system to keep the distance between automobiles.Moreover the algorithm was tested using professional automobile simulation platform.The results demonstrated that neural network based PID control algorithm can precisely and efficiently control the distance between two cars.This work provides a reference for the development of automobile automatic obstacle avoidance and cruise system.展开更多
In this paper, the fixed-time event-triggered obstacle avoidance consensus control for a multi-AUV time-varying formation system in a 3D environment is presented by using an improved artificial potential field and lea...In this paper, the fixed-time event-triggered obstacle avoidance consensus control for a multi-AUV time-varying formation system in a 3D environment is presented by using an improved artificial potential field and leader-follower strategy(IAPF-LF). Firstly, the proposed fixed-time control can achieve the desired multi-AUV formation within a fixed settling time in any initial system state. Secondly, an event-triggered communication strategy is developed to govern the communication among AUVs, and the communication energy consumption can be decremented. The time-varying formation obstacle avoidance control algorithm based on IAPF-LF is designed to avoid static and dynamic obstacles, the desired formation is maintained in the presence of external disturbances, and there is no Zeno behavior under the fixed-time event-triggered consensus control strategy.The stability of the system is proved by the Lyapunov function and inequality scaling. Finally, simulation examples and water pool experiments are reported to verify the performance of the proposed theoretical algorithms.展开更多
Obstacle avoidance becomes a very challenging task for an autonomous underwater vehicle(AUV)in an unknown underwater environment during exploration process.Successful control in such case may be achieved using the mod...Obstacle avoidance becomes a very challenging task for an autonomous underwater vehicle(AUV)in an unknown underwater environment during exploration process.Successful control in such case may be achieved using the model-based classical control techniques like PID and MPC but it required an accurate mathematical model of AUV and may fail due to parametric uncertainties,disturbance,or plant model mismatch.On the other hand,model-free reinforcement learning(RL)algorithm can be designed using actual behavior of AUV plant in an unknown environment and the learned control may not get affected by model uncertainties like a classical control approach.Unlike model-based control model-free RL based controller does not require to manually tune controller with the changing environment.A standard RL based one-step Q-learning based control can be utilized for obstacle avoidance but it has tendency to explore all possible actions at given state which may increase number of collision.Hence a modified Q-learning based control approach is proposed to deal with these problems in unknown environment.Furthermore,function approximation is utilized using neural network(NN)to overcome the continuous states and large statespace problems which arise in RL-based controller design.The proposed modified Q-learning algorithm is validated using MATLAB simulations by comparing it with standard Q-learning algorithm for single obstacle avoidance.Also,the same algorithm is utilized to deal with multiple obstacle avoidance problems.展开更多
This paper presents a novel vision-based obstacle avoidance approach for the Autonomous Mobile Robot (AMR) with a Pan-Tilt-Zoom (PTZ) camera as its only sensing modality. The approach combines the morphological closin...This paper presents a novel vision-based obstacle avoidance approach for the Autonomous Mobile Robot (AMR) with a Pan-Tilt-Zoom (PTZ) camera as its only sensing modality. The approach combines the morphological closing operation based on Sobel Edge Detection Operation and the (μ-kσ) thresholding technique to detect obstacles to soften the various lighting and ground floor effects. Both the morphology method and thresholding technique are computationally simple. The processing speed of the algorithm is fast enough to avoid some active obstacles. In addition, this approach takes into account the history obstacle effects on the current state. Fuzzy logic is used to control the behaviors of AMR as it navigates in the environment. All behaviors run concurrently and generate motor response solely based on vision perception. A priority based on subsumption coordinator selects the most appropriate response to direct the AMR away from obstacles. Validation of the proposed approach is done on a Pioneer 1 mobile robot.展开更多
基金the National Natural Science Foundation of China(51939001,52171292,51979020,61976033)Dalian Outstanding Young Talents Program(2022RJ05)+1 种基金the Topnotch Young Talents Program of China(36261402)the Liaoning Revitalization Talents Program(XLYC20-07188)。
文摘This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments,which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults,an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer,which only depends on measurable position information of the autonomous surface vehicle,is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism,a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results,the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally,the comparison results through simulations are given to verify the effectiveness of the proposed method.
基金the National Natural Science Foundation of China(No.51577112,51575328)Science and Technology Commission of Shanghai Municipality Project(No.16511108600).
文摘This paper presents a novel dynamic A^*path finding algorithm and 3D lidar based local obstacle avoidance strategy for an autonomous vehicle.3D point cloud data is collected and analyzed in real time.Local obstacles are detected online and a 2D local obstacle grid map is constructed at 10 Hz/s.The A^*path finding algorithm is employed to generate a local path in this local obstacle grid map by considering both the target position and obstacles.The vehicle avoids obstacles under the guidance of the generated local path.Experiment results have shown the effectiveness of the obstacle avoidance navigation algorithm proposed.
文摘With the improvement of automobile ownership in recent years,the incidence of traffic accidents constantly increases and requirements on the security of automobiles become increasingly higher.As science and technology develops constantly,the development of automobile automatic obstacle avoidance and cruise system accelerates gradually,and the requirement on distance control becomes stricter.Automobile automatic obstacle avoidance and cruise system can determine the conditions of automobiles and roads using sensing technology,automatically adopt measures to control automobile after discovering road safety hazards,thus to reduce the incidence of traffic accidents.To prevent accidental collision of automobile which are installed with automatic obstacle avoidance and cruise system,active brake should be controlled during driving.This study put forward a neural network based proportional-integral-derivative(PID)control algorithm.The active brake of automobiles was effectively controlled using the system to keep the distance between automobiles.Moreover the algorithm was tested using professional automobile simulation platform.The results demonstrated that neural network based PID control algorithm can precisely and efficiently control the distance between two cars.This work provides a reference for the development of automobile automatic obstacle avoidance and cruise system.
基金supported in part by the National Natural Science Foundation of China (62033009)the Creative Activity Plan for Science and Technology Commission of Shanghai (20510712300,21DZ2293500)the Supported by Science Foundation of Donghai Laboratory。
文摘In this paper, the fixed-time event-triggered obstacle avoidance consensus control for a multi-AUV time-varying formation system in a 3D environment is presented by using an improved artificial potential field and leader-follower strategy(IAPF-LF). Firstly, the proposed fixed-time control can achieve the desired multi-AUV formation within a fixed settling time in any initial system state. Secondly, an event-triggered communication strategy is developed to govern the communication among AUVs, and the communication energy consumption can be decremented. The time-varying formation obstacle avoidance control algorithm based on IAPF-LF is designed to avoid static and dynamic obstacles, the desired formation is maintained in the presence of external disturbances, and there is no Zeno behavior under the fixed-time event-triggered consensus control strategy.The stability of the system is proved by the Lyapunov function and inequality scaling. Finally, simulation examples and water pool experiments are reported to verify the performance of the proposed theoretical algorithms.
基金the support of Centre of Excellence (CoE) in Complex and Nonlinear dynamical system (CNDS), through TEQIP-II, VJTI, Mumbai, India
文摘Obstacle avoidance becomes a very challenging task for an autonomous underwater vehicle(AUV)in an unknown underwater environment during exploration process.Successful control in such case may be achieved using the model-based classical control techniques like PID and MPC but it required an accurate mathematical model of AUV and may fail due to parametric uncertainties,disturbance,or plant model mismatch.On the other hand,model-free reinforcement learning(RL)algorithm can be designed using actual behavior of AUV plant in an unknown environment and the learned control may not get affected by model uncertainties like a classical control approach.Unlike model-based control model-free RL based controller does not require to manually tune controller with the changing environment.A standard RL based one-step Q-learning based control can be utilized for obstacle avoidance but it has tendency to explore all possible actions at given state which may increase number of collision.Hence a modified Q-learning based control approach is proposed to deal with these problems in unknown environment.Furthermore,function approximation is utilized using neural network(NN)to overcome the continuous states and large statespace problems which arise in RL-based controller design.The proposed modified Q-learning algorithm is validated using MATLAB simulations by comparing it with standard Q-learning algorithm for single obstacle avoidance.Also,the same algorithm is utilized to deal with multiple obstacle avoidance problems.
基金TheNationalNaturalSienceFoundationofChina (No .6 2 385 2 )
文摘This paper presents a novel vision-based obstacle avoidance approach for the Autonomous Mobile Robot (AMR) with a Pan-Tilt-Zoom (PTZ) camera as its only sensing modality. The approach combines the morphological closing operation based on Sobel Edge Detection Operation and the (μ-kσ) thresholding technique to detect obstacles to soften the various lighting and ground floor effects. Both the morphology method and thresholding technique are computationally simple. The processing speed of the algorithm is fast enough to avoid some active obstacles. In addition, this approach takes into account the history obstacle effects on the current state. Fuzzy logic is used to control the behaviors of AMR as it navigates in the environment. All behaviors run concurrently and generate motor response solely based on vision perception. A priority based on subsumption coordinator selects the most appropriate response to direct the AMR away from obstacles. Validation of the proposed approach is done on a Pioneer 1 mobile robot.