Large-scale flapping-wing flying robotic birds have huge application potential in outdoor tasks,such as military reconnaissance,environment exploring,disaster rescue and so on.In this paper,a multiple modes flight con...Large-scale flapping-wing flying robotic birds have huge application potential in outdoor tasks,such as military reconnaissance,environment exploring,disaster rescue and so on.In this paper,a multiple modes flight control method and system are proposed for a large-scale robotic bird which has 2.3 m wingspan and 650 g mass.Different from small flapping wing aerial vehicle,the mass of its wings cannot be neglected and the flapping frequency are much lower.Therefore,the influence of transient aerodynamics instead of only mean value are considered in attitude estimation and controller design.Moreover,flight attitude and trajectory are highly coupled,and the robot has only three actuators----one for wings flapping and two for tail adjustment,it is very difficult to simultaneously control the attitude and position.Hence,a fuzzy control strategy is addressed to determine the command of each actuator by considering the priority of attitude stabilization,trajectory tracking and the flight safety.Then,the on-board controller is designed based on FreeRTOS.It not only satisfies the strict restrictions on mass,size,power and space but also meets the autonomous,semi-autonomous and manual flight control requirements.Finally,the developed control system was integrated to the robotic prototype,HIT-phoenix.Flight experiments under different environment conditions such as sunny and windy weather were completed to verify the control method and system.展开更多
Designing a stable and robust flight control system for an Unmanned Aerial Vehicle(UAV)is an arduous task.This paper addresses the trajectory tracking control problem of a Ducted Fan UAV(DFUAV)using offset-free Model ...Designing a stable and robust flight control system for an Unmanned Aerial Vehicle(UAV)is an arduous task.This paper addresses the trajectory tracking control problem of a Ducted Fan UAV(DFUAV)using offset-free Model Predictive Control(MPC)technique in the presence of various uncertainties and external disturbances.The designed strategy aims to ensure adequate flight robustness and stability while overcoming the effects of time delays,parametric uncertainties,and disturbances.The six degrees of freedom DFUAV model is divided into three flight modes based on its airspeed,namely the hover,transition,and cruise mode.The Dryden wind turbulence is applied to the DFUAV in the linear and angular velocity component.Moreover,different uncertainties such as parametric,time delays in state and input,are introduced in translational and rotational components.From the previous work,the Linear Quadratic Tracker with Integrator(LQTI)is used for comparison to corroborate the performance of the designed controller.Simulations are computed to investigate the control performance for the aforementioned modes and different flight phases including the autonomous flight to validate the performance of the designed strategy.Finally,discussions are provided to demonstrate the effectiveness of the given methodology.展开更多
基金supported by the National Natural Science Foundation of China(No.U1613227,61803125)Guangdong Special Support Program of China(No.2017TX04X0071)the Basic Research Program of Shenzhen of China(Nos.JCYJ20180507183610564,JCYJ20190806144416980)。
文摘Large-scale flapping-wing flying robotic birds have huge application potential in outdoor tasks,such as military reconnaissance,environment exploring,disaster rescue and so on.In this paper,a multiple modes flight control method and system are proposed for a large-scale robotic bird which has 2.3 m wingspan and 650 g mass.Different from small flapping wing aerial vehicle,the mass of its wings cannot be neglected and the flapping frequency are much lower.Therefore,the influence of transient aerodynamics instead of only mean value are considered in attitude estimation and controller design.Moreover,flight attitude and trajectory are highly coupled,and the robot has only three actuators----one for wings flapping and two for tail adjustment,it is very difficult to simultaneously control the attitude and position.Hence,a fuzzy control strategy is addressed to determine the command of each actuator by considering the priority of attitude stabilization,trajectory tracking and the flight safety.Then,the on-board controller is designed based on FreeRTOS.It not only satisfies the strict restrictions on mass,size,power and space but also meets the autonomous,semi-autonomous and manual flight control requirements.Finally,the developed control system was integrated to the robotic prototype,HIT-phoenix.Flight experiments under different environment conditions such as sunny and windy weather were completed to verify the control method and system.
基金co-supported by the National Natural Science Foundation of China(Nos.61225015,61105092,61422102,and 61703040)the Beijing Natural Science Foundation,China(No.4161001)the China Postdoctoral Science Foundation(No.2017M620640)。
文摘Designing a stable and robust flight control system for an Unmanned Aerial Vehicle(UAV)is an arduous task.This paper addresses the trajectory tracking control problem of a Ducted Fan UAV(DFUAV)using offset-free Model Predictive Control(MPC)technique in the presence of various uncertainties and external disturbances.The designed strategy aims to ensure adequate flight robustness and stability while overcoming the effects of time delays,parametric uncertainties,and disturbances.The six degrees of freedom DFUAV model is divided into three flight modes based on its airspeed,namely the hover,transition,and cruise mode.The Dryden wind turbulence is applied to the DFUAV in the linear and angular velocity component.Moreover,different uncertainties such as parametric,time delays in state and input,are introduced in translational and rotational components.From the previous work,the Linear Quadratic Tracker with Integrator(LQTI)is used for comparison to corroborate the performance of the designed controller.Simulations are computed to investigate the control performance for the aforementioned modes and different flight phases including the autonomous flight to validate the performance of the designed strategy.Finally,discussions are provided to demonstrate the effectiveness of the given methodology.