期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Integrated method for measuring distance and time difference between small satellites 被引量:2
1
作者 ZHU Yaowei XU Zhaobin +2 位作者 JIN Xiaojun GUO Xiaoxu JIN Zhonghe 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第3期596-606,共11页
The advancement of small satellites is promoting the development of distributed satellite systems,and for the latter,it is essential to coordinate the spatial and temporal relations between mutually visible satellites... The advancement of small satellites is promoting the development of distributed satellite systems,and for the latter,it is essential to coordinate the spatial and temporal relations between mutually visible satellites.By now,dual one-way ranging(DOWR)and two-way time transfer(TWTT)are generally integrated in the same software and hardware system to meet the limitations of small satellites in terms of size,weight and power(SWaP)consumption.However,studies show that pseudo-noise regenerative ranging(PNRR)performs better than DOWR if some advanced implementation technologies are employed.Besides,PNRR has no requirement on time synchronization.To apply PNRR to small satellites,and meanwhile,meet the demand for time difference measurement,we propose the round-way time difference measurement,which can be combined with PNRR to form a new integrated system without exceeding the limits of SWaP.The new integrated system can provide distributed small satellite systems with on-orbit high-accuracy and high-precision distance measurement and time difference measurement in real time.Experimental results show that the precision of ranging is about 1.94 cm,and that of time difference measurement is about 78.4 ps,at the signal to noise ratio of 80 dBHz. 展开更多
关键词 time difference measurement time synchronization inter-satellite ranging satellite formation autonomous flying
下载PDF
A path planning algorithm for autonomous flying vehicles in cross-countryenvironments with a novel TF-RRT^(*) method 被引量:2
2
作者 Tianqi Qie Weida Wang +3 位作者 Chao Yang Ying Li Wenjie Liu Changle Xiang 《Green Energy and Intelligent Transportation》 2022年第3期81-93,共13页
Autonomous flying vehicles(AFVs)are promising future vehicles,which have high obstacle avoidance ability.To plan a feasible path in a wide range of cross-country environments for the AFV,a triggered forward optimal ra... Autonomous flying vehicles(AFVs)are promising future vehicles,which have high obstacle avoidance ability.To plan a feasible path in a wide range of cross-country environments for the AFV,a triggered forward optimal rapidly-exploring random tree(TF-RRT^(*))method is proposed.Firstly,an improved sampling and tree growth mechanism is built.Sampling and tree growth are allowed only in the forward region close to the target point,which significantly improves the planning speed;Secondly,the driving modes(ground-driving mode or air-driving mode)of the AFV are added to the sampling process as a planned state for uniform planning the driving path and driving mode;Thirdly,according to the dynamics and energy consumption models of the AFV,comprehensive indicators with energy consumption and efficiency are established for path optimal procedures,so as to select driving mode and plan driving path reasonably according to the demand.The proposed method is verified by simulations with an actual cross-country environment.Results show that the computation time is decreased by 71.08%compared with Informed-RRT^(*)algorithm,and the path length of the proposed method decreased by 13.01%compared with RRT^(*)-Connect algorithm. 展开更多
关键词 autonomous flying vehicles(AFVs) Path planning Rapidly-exploring random tree(RRT) Mode switch
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部