Artificial general intelligence (AGI) is the ability of an artificial intelligence (AI) agent to solve somewhat-arbitrary tasks in somewhat-arbitrary environments. Despite being a long-standing goal in the field of AI...Artificial general intelligence (AGI) is the ability of an artificial intelligence (AI) agent to solve somewhat-arbitrary tasks in somewhat-arbitrary environments. Despite being a long-standing goal in the field of AI, achieving AGI remains elusive. In this study, we empirically assessed the generalizability of AI agents by applying a deep reinforcement learning (DRL) approach to the medical domain. Our investigation involved examining how modifying the agent’s structure, task, and environment impacts its generality. Sample: An NIH chest X-ray dataset with 112,120 images and 15 medical conditions. We evaluated the agent’s performance on binary and multiclass classification tasks through a baseline model, a convolutional neural network model, a deep Q network model, and a proximal policy optimization model. Results: Our results suggest that DRL agents with the algorithmic flexibility to autonomously vary their macro/microstructures can generalize better across given tasks and environments.展开更多
文摘Artificial general intelligence (AGI) is the ability of an artificial intelligence (AI) agent to solve somewhat-arbitrary tasks in somewhat-arbitrary environments. Despite being a long-standing goal in the field of AI, achieving AGI remains elusive. In this study, we empirically assessed the generalizability of AI agents by applying a deep reinforcement learning (DRL) approach to the medical domain. Our investigation involved examining how modifying the agent’s structure, task, and environment impacts its generality. Sample: An NIH chest X-ray dataset with 112,120 images and 15 medical conditions. We evaluated the agent’s performance on binary and multiclass classification tasks through a baseline model, a convolutional neural network model, a deep Q network model, and a proximal policy optimization model. Results: Our results suggest that DRL agents with the algorithmic flexibility to autonomously vary their macro/microstructures can generalize better across given tasks and environments.