The formation of neovascularization is a common pathological feature of many ocular vascular diseases, and is an important cause of vision loss in patients. Neovascularization can cause retinal hemorrhage, vitreous he...The formation of neovascularization is a common pathological feature of many ocular vascular diseases, and is an important cause of vision loss in patients. Neovascularization can cause retinal hemorrhage, vitreous hemorrhage, and other serious complications, leading to loss of vision. The treatment of intraocular neovascularization is the focus of ophthalmology research. In recent years, some studies have found that autophagy is closely related to vascular endothelial growth factor and the formation of neovascularization. Autophagy is expected to become a new target for the treatment of intraocular neovascularization. Therefore, this article reviews the research on autophagy and the formation of intraocular neovascularization.展开更多
Vanishing white matter disease (VWM), a human atitosomal recessive inherited leukoencephalopathy, is due to mutations in eukaryotic initiation factor 2B (elF2B). elF2B is responsible for tile initiation of protein...Vanishing white matter disease (VWM), a human atitosomal recessive inherited leukoencephalopathy, is due to mutations in eukaryotic initiation factor 2B (elF2B). elF2B is responsible for tile initiation of protein synthesis by its guanine nucleotide exchange lhctor (GEF) activity. Mutations ofelF2B impair GEF activity at different degree. Previous studies implied improperly activated unlblded protein response (UPR) and endoplasmic reticulum stress (ERS) participated in the pathogenesis ofVWM. Autophagy relieves endoplasmic reticulum load by eliminating the unfolded protein. It is still unknown the effects of genotypes on the pathogenesis. In this work, UPR and autophagy flux were analyzed with different mutational types. Methods: ERS tolerance, reflected by apoptosis and cell viability, was detected in human oligodendrocyte cell line transfected with the wild type, or different mutations of p. Argl 13 His, p. Arg269* or p. Ser610-Asp613del in el F2 Be. A representative U PR-PERK component of activating transcription lhctor 4 (ATF4) was measured under the basal condition and ERS induction. Autophagy was analyzed the flux in the presence of lysosomal inhibitors. Results: The degree of ERS tolerance varied in different genotypes. The truncated or deletion mutant showed prominent apoptosis cell viability declination after ERS induction. The most seriously damaged GEF activity ofp. Arg269* group underwent spontaneous apoptosis. The truncated or deletion mutant showed elevated ATF4 under basal as well as ERS condition. Decreased expression of LC3-1 and LC3-11 in the mutants reflected an impaired autophagy flux, which was more obvious in the truncated or deletion mutants alter ERS induction. Conclusions: GEF activities in dilt;erent genotypes could influence the cell ERS tolerance as well as compensatory pathways of UPR and autophagy. Oligodendrocytes with truncated or deletion inutants showed less tolerable to ERS.展开更多
基金Supported by the Natural Science Foundation of Shaanxi province(No.2016JM8018)the Natural Science Foundation of Xi’an Science Technology Bureau[(No.SF1508(3)]
文摘The formation of neovascularization is a common pathological feature of many ocular vascular diseases, and is an important cause of vision loss in patients. Neovascularization can cause retinal hemorrhage, vitreous hemorrhage, and other serious complications, leading to loss of vision. The treatment of intraocular neovascularization is the focus of ophthalmology research. In recent years, some studies have found that autophagy is closely related to vascular endothelial growth factor and the formation of neovascularization. Autophagy is expected to become a new target for the treatment of intraocular neovascularization. Therefore, this article reviews the research on autophagy and the formation of intraocular neovascularization.
基金grants from the Natural Science Foundation of China,National Key Technology R and D Program,Key Laboratory Program of Ministry of Education
文摘Vanishing white matter disease (VWM), a human atitosomal recessive inherited leukoencephalopathy, is due to mutations in eukaryotic initiation factor 2B (elF2B). elF2B is responsible for tile initiation of protein synthesis by its guanine nucleotide exchange lhctor (GEF) activity. Mutations ofelF2B impair GEF activity at different degree. Previous studies implied improperly activated unlblded protein response (UPR) and endoplasmic reticulum stress (ERS) participated in the pathogenesis ofVWM. Autophagy relieves endoplasmic reticulum load by eliminating the unfolded protein. It is still unknown the effects of genotypes on the pathogenesis. In this work, UPR and autophagy flux were analyzed with different mutational types. Methods: ERS tolerance, reflected by apoptosis and cell viability, was detected in human oligodendrocyte cell line transfected with the wild type, or different mutations of p. Argl 13 His, p. Arg269* or p. Ser610-Asp613del in el F2 Be. A representative U PR-PERK component of activating transcription lhctor 4 (ATF4) was measured under the basal condition and ERS induction. Autophagy was analyzed the flux in the presence of lysosomal inhibitors. Results: The degree of ERS tolerance varied in different genotypes. The truncated or deletion mutant showed prominent apoptosis cell viability declination after ERS induction. The most seriously damaged GEF activity ofp. Arg269* group underwent spontaneous apoptosis. The truncated or deletion mutant showed elevated ATF4 under basal as well as ERS condition. Decreased expression of LC3-1 and LC3-11 in the mutants reflected an impaired autophagy flux, which was more obvious in the truncated or deletion mutants alter ERS induction. Conclusions: GEF activities in dilt;erent genotypes could influence the cell ERS tolerance as well as compensatory pathways of UPR and autophagy. Oligodendrocytes with truncated or deletion inutants showed less tolerable to ERS.