The clinical efficacy of current cancer therapies falls short,and there is a pressing demand to integrate new targets with conventional therapies.Autophagy,a highly conserved self-degradation process,has received cons...The clinical efficacy of current cancer therapies falls short,and there is a pressing demand to integrate new targets with conventional therapies.Autophagy,a highly conserved self-degradation process,has received considerable attention as an emerging therapeutic target for cancer.With the rapid development of nanomedicine,nanomaterials have been widely utilized in cancer therapy due to their unrivaled delivery performance.Hence,considering the potential benefits of integrating autophagy and nanotechnology in cancer therapy,we outline the latest advances in autophagy-based nanotherapeutics.Based on a brief background related to autophagy and nanotherapeutics and their impact on tumor progression,the feasibility of autophagy-based nanotherapeutics for cancer treatment is demonstrated.Further,emerging nanotherapeutics developed to modulate autophagy are reviewed from the perspective of cell signaling pathways,including modulation of the mammalian target of rapamycin(mTOR)pathway,autophagy-related(ATG)and its complex expression,reactive oxygen species(ROS)and mitophagy,interference with autophagosome-lysosome fusion,and inhibition of hypoxia-mediated autophagy.In addition,combination therapies in which nano-autophagy modulation is combined with chemotherapy,phototherapy,and immunotherapy are also described.Finally,the prospects and challenges of autophagy-based nanotherapeutics for efficient cancer treatment are envisioned.展开更多
G蛋白配对的生理过程需要微调附属分子如G蛋白信号调节蛋白(regulator of G-protein signaling,RGS)。作为肿瘤血管周细胞的标记物,RGS5最近已被确定在致癌的血管成熟和血管再造过程中起中枢作用。值得注意的是,缺乏RGS5肿瘤的血管形态...G蛋白配对的生理过程需要微调附属分子如G蛋白信号调节蛋白(regulator of G-protein signaling,RGS)。作为肿瘤血管周细胞的标记物,RGS5最近已被确定在致癌的血管成熟和血管再造过程中起中枢作用。值得注意的是,缺乏RGS5肿瘤的血管形态标准化且血流丰富。同时,发现肿瘤血管的形态变化也导致淋巴细胞功能的改善和抗肿瘤免疫疗法的成功。因此,研究RGS5与肿瘤血管形态学的关系,可增强对血管再造的理解,促进抗癌治疗的改善。展开更多
基金the National Natural Science Foundation of China(No.81971729)for financial support.
文摘The clinical efficacy of current cancer therapies falls short,and there is a pressing demand to integrate new targets with conventional therapies.Autophagy,a highly conserved self-degradation process,has received considerable attention as an emerging therapeutic target for cancer.With the rapid development of nanomedicine,nanomaterials have been widely utilized in cancer therapy due to their unrivaled delivery performance.Hence,considering the potential benefits of integrating autophagy and nanotechnology in cancer therapy,we outline the latest advances in autophagy-based nanotherapeutics.Based on a brief background related to autophagy and nanotherapeutics and their impact on tumor progression,the feasibility of autophagy-based nanotherapeutics for cancer treatment is demonstrated.Further,emerging nanotherapeutics developed to modulate autophagy are reviewed from the perspective of cell signaling pathways,including modulation of the mammalian target of rapamycin(mTOR)pathway,autophagy-related(ATG)and its complex expression,reactive oxygen species(ROS)and mitophagy,interference with autophagosome-lysosome fusion,and inhibition of hypoxia-mediated autophagy.In addition,combination therapies in which nano-autophagy modulation is combined with chemotherapy,phototherapy,and immunotherapy are also described.Finally,the prospects and challenges of autophagy-based nanotherapeutics for efficient cancer treatment are envisioned.
文摘G蛋白配对的生理过程需要微调附属分子如G蛋白信号调节蛋白(regulator of G-protein signaling,RGS)。作为肿瘤血管周细胞的标记物,RGS5最近已被确定在致癌的血管成熟和血管再造过程中起中枢作用。值得注意的是,缺乏RGS5肿瘤的血管形态标准化且血流丰富。同时,发现肿瘤血管的形态变化也导致淋巴细胞功能的改善和抗肿瘤免疫疗法的成功。因此,研究RGS5与肿瘤血管形态学的关系,可增强对血管再造的理解,促进抗癌治疗的改善。