期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A new method of determining the optimal embedding dimension based on nonlinear prediction 被引量:1
1
作者 孟庆芳 彭玉华 薛佩军 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第5期1252-1257,共6页
A new method is proposed to determine the optimal embedding dimension from a scalar time series in this paper. This method determines the optimal embedding dimension by optimizing the nonlinear autoregressive predicti... A new method is proposed to determine the optimal embedding dimension from a scalar time series in this paper. This method determines the optimal embedding dimension by optimizing the nonlinear autoregressive prediction model parameterized by the embedding dimension and the nonlinear degree. Simulation results show the effectiveness of this method. And this method is applicable to a short time series, stable to noise, computationally efficient, and without any purposely introduced parameters. 展开更多
关键词 embedding dimension nonlinear autoregressive prediction model nonlinear time series
下载PDF
On-line real-time path planning of mobile robots in dynamic uncertain environment 被引量:2
2
作者 ZHUANG Hui-zhong DU Shu-xin WU Tie-jun 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第4期516-524,共9页
A new path planning method for mobile robots in globally unknown environment with moving obstacles is pre- sented. With an autoregressive (AR) model to predict the future positions of moving obstacles, and the predict... A new path planning method for mobile robots in globally unknown environment with moving obstacles is pre- sented. With an autoregressive (AR) model to predict the future positions of moving obstacles, and the predicted position taken as the next position of moving obstacles, a motion path in dynamic uncertain environment is planned by means of an on-line real-time path planning technique based on polar coordinates in which the desirable direction angle is taken into consideration as an optimization index. The effectiveness, feasibility, high stability, perfect performance of obstacle avoidance, real-time and optimization capability are demonstrated by simulation examples. 展开更多
关键词 Mobile robot Dynamic obstacle autoregressive (AR) prediction On-line real-time path planning Desirable direction angle
下载PDF
Traffic Prediction in 3G Mobile Networks Based on Multifractal Exploration 被引量:6
3
作者 Yanhua Yu Meina Song +1 位作者 Yu Fu Junde Song 《Tsinghua Science and Technology》 SCIE EI CAS 2013年第4期398-405,共8页
Traffic prediction plays an integral role in telecommunication network planning and network optimization. In this paper, we investigate the traffic forecasting for data services in 3G mobile networks. Although the Box... Traffic prediction plays an integral role in telecommunication network planning and network optimization. In this paper, we investigate the traffic forecasting for data services in 3G mobile networks. Although the Box-Jenkins model has been proven to be appropriate for voice traffic (since the arrival of calls follows a Poisson distribution), it has been demonstrated that the Internet traffic exhibits statistical self-similarity and has to be modeled using the Fractional AutoRegressive Integrated Moving Average (FARIMA) process. However, a few studies have concluded that the FARIMA process may fail in modeling the Internet traffic. To this end, we conducted experiments on the modeling of benchmark Internet traffic and found that the FARIMA process fails because of the significant multifractal characteristic inherent in the traffic series. Thereafter, we investigate the traffic series of data services in a 3G mobile network from a province in China. Rich multifractal spectra are found in this series. Based on this observation, an integrated method combining the AutoRegressive Moving Average (ARMA) and FARIMA processes is applied. The obtained experimental results verify the effectiveness of the integrated prediction method. 展开更多
关键词 time series prediction self-similar Fractional autoregressive Integrated Moving Average (FARIMA)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部