A novel volumetric three-dimensional(3-D) display system is developed based on the human eye persistence and the system fuses a time-series of image slices into a single hologram like 3-D aerial image. The system de...A novel volumetric three-dimensional(3-D) display system is developed based on the human eye persistence and the system fuses a time-series of image slices into a single hologram like 3-D aerial image. The system design is introduced and key components are described. Experimental results show that the 3-D system can guide people freely walk around the display to inspect the true 3-D image without goggles.展开更多
Recently, the reference functions for the synthesis and analysis of the autostereoscopic multiview and integral images in three-dimensional displays were introduced. In the current paper, we propose the wavelets to an...Recently, the reference functions for the synthesis and analysis of the autostereoscopic multiview and integral images in three-dimensional displays were introduced. In the current paper, we propose the wavelets to analyze such images. The wavelets are built on these reference functions as on the scaling functions of the wavelet analysis. The continuous wavelet transform was successfully applied to the testing wireframe binary objects. The restored locations correspond to the structure of the testing wireframe binary objects.展开更多
Based on the helix rotating screen and the digital micro-mirror device (DMD), the former proto of volumetric-swept display system is improved. The 3-D display system adopting a helix rotating screen to construct an ...Based on the helix rotating screen and the digital micro-mirror device (DMD), the former proto of volumetric-swept display system is improved. The 3-D display system adopting a helix rotating screen to construct an imaging space meliorate the defects, such as the smaller image space, the fewer voxels and the severer voxel overlap dead zone caused by planar rotating screen. DMD with spatial light modular (SLM) technology increases the transmission bandwidth of 3-D data in the voxel activation subsystem and activate multi-voxel once time. The volumetric-swept system based on helix rotating screen and DMD is developed. The experimental results show that the image space, the vision dead zone, the voxels on slice, and the voxel activation capacity of the designed proto are superior to the plane rotating screen system.展开更多
As a 3-D display technology,stereoscopic imaging with lenticular lens sheet can only offer viewers the horizontal parallax.To reconstruct the 3-D image with parallax in both horizontal and vertical directions,the full...As a 3-D display technology,stereoscopic imaging with lenticular lens sheet can only offer viewers the horizontal parallax.To reconstruct the 3-D image with parallax in both horizontal and vertical directions,the full parallax technique with micro-lens array was proposed.But due to the fabrication constraints and cost concerns of the micro-lens array,application of the full parallax technique is restricted in practice.In this paper we revisited the lenticular sheet method and cross-lenticular lens array formed by two lenticular sheets overlapped orthogonally.By analyzing the optical properties of this cross-lenticular lens array,we found that it has reasonable imaging qualities as a conventional micro-lens array.Besides,due to the poor optical property of the outskirt area of the cross-lenticular lens,the cross-lenticular lens array has better crosstalk suppression capability than the conventional one.Based on the analysis,in this paper,we used the proposed lens array to reconstruct a 3-D image and verified its practicability.The cross-lenticular lens array was found feasible to take the full parallax technique into commercial applications,with comparable advantages in terms of low-cost and easy fabrication over a large area.展开更多
It is an active research area to reconstruct 3-D object and display its visible surfacesfrom cross-sectional images. In this paper, the methods of reconstructing 3-D object from medicalCT images and displaying the vis...It is an active research area to reconstruct 3-D object and display its visible surfacesfrom cross-sectional images. In this paper, the methods of reconstructing 3-D object from medicalCT images and displaying the visible surfaces are discussed. A polygon approximation methodthat forms polygon with the same number of segment points and a fast interpolation method forcross-sectional contours are presented at first. Then the voxel set of a human liver is reconstructed.And then the liver voxel set is displayed using depth and gradient shading methods. The softwareis written in C programming language at a microcomputer image processing system with a PC/ATcomputer as the host and a PC-VISION board as the image processing unit. The result of theprocessing is satisfying.展开更多
文摘A novel volumetric three-dimensional(3-D) display system is developed based on the human eye persistence and the system fuses a time-series of image slices into a single hologram like 3-D aerial image. The system design is introduced and key components are described. Experimental results show that the 3-D system can guide people freely walk around the display to inspect the true 3-D image without goggles.
文摘Recently, the reference functions for the synthesis and analysis of the autostereoscopic multiview and integral images in three-dimensional displays were introduced. In the current paper, we propose the wavelets to analyze such images. The wavelets are built on these reference functions as on the scaling functions of the wavelet analysis. The continuous wavelet transform was successfully applied to the testing wireframe binary objects. The restored locations correspond to the structure of the testing wireframe binary objects.
基金Supported by the National High Technology Research and Development Program of China(″863″Program)(2007AA01Z338)the National Science Foundation for Post-doctoral Scientists of China(20080441051)the Jiangsu Province Science Foundation for Post-doctoral Scientists(0802014c)~~
文摘Based on the helix rotating screen and the digital micro-mirror device (DMD), the former proto of volumetric-swept display system is improved. The 3-D display system adopting a helix rotating screen to construct an imaging space meliorate the defects, such as the smaller image space, the fewer voxels and the severer voxel overlap dead zone caused by planar rotating screen. DMD with spatial light modular (SLM) technology increases the transmission bandwidth of 3-D data in the voxel activation subsystem and activate multi-voxel once time. The volumetric-swept system based on helix rotating screen and DMD is developed. The experimental results show that the image space, the vision dead zone, the voxels on slice, and the voxel activation capacity of the designed proto are superior to the plane rotating screen system.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2010CB327702)
文摘As a 3-D display technology,stereoscopic imaging with lenticular lens sheet can only offer viewers the horizontal parallax.To reconstruct the 3-D image with parallax in both horizontal and vertical directions,the full parallax technique with micro-lens array was proposed.But due to the fabrication constraints and cost concerns of the micro-lens array,application of the full parallax technique is restricted in practice.In this paper we revisited the lenticular sheet method and cross-lenticular lens array formed by two lenticular sheets overlapped orthogonally.By analyzing the optical properties of this cross-lenticular lens array,we found that it has reasonable imaging qualities as a conventional micro-lens array.Besides,due to the poor optical property of the outskirt area of the cross-lenticular lens,the cross-lenticular lens array has better crosstalk suppression capability than the conventional one.Based on the analysis,in this paper,we used the proposed lens array to reconstruct a 3-D image and verified its practicability.The cross-lenticular lens array was found feasible to take the full parallax technique into commercial applications,with comparable advantages in terms of low-cost and easy fabrication over a large area.
文摘It is an active research area to reconstruct 3-D object and display its visible surfacesfrom cross-sectional images. In this paper, the methods of reconstructing 3-D object from medicalCT images and displaying the visible surfaces are discussed. A polygon approximation methodthat forms polygon with the same number of segment points and a fast interpolation method forcross-sectional contours are presented at first. Then the voxel set of a human liver is reconstructed.And then the liver voxel set is displayed using depth and gradient shading methods. The softwareis written in C programming language at a microcomputer image processing system with a PC/ATcomputer as the host and a PC-VISION board as the image processing unit. The result of theprocessing is satisfying.