Drought often lasts long and is thus closely related to slowly varying external forcing such as sea surface temperature(SST).Here,based on observed precipitation and SST data along with NCEP-DOE reanalysis data,the po...Drought often lasts long and is thus closely related to slowly varying external forcing such as sea surface temperature(SST).Here,based on observed precipitation and SST data along with NCEP-DOE reanalysis data,the possible impacts of North Atlantic SST on drought formation in Southwest China are investigated.Results show that northeast-southwest-orientated dipole SST anomalies in the mid-high latitudes of the North Atlantic are closely related to autumn drought in Southwest China;the linear correlation coefficient between them reaches 0.48 during 1979-2020,significant at the 0.001 level.The dipole SST anomalies trigger southeastward-propagating Rossby waves and induce barotropic cyclonic circulation anomalies over India and the western Tibetan Plateau.This enhances the upward motion in northern India and the western Tibetan Plateau and causes a compensating downdraft,reduced precipitation,and consequent drought formation in Southwest China.展开更多
[Objective] The aim was to study the reasons for consecutive severe droughts in autumn and winter. [Method] By dint of precipitation in the observatory station and NCEP/NCAR reanalysis data in observatory station, the...[Objective] The aim was to study the reasons for consecutive severe droughts in autumn and winter. [Method] By dint of precipitation in the observatory station and NCEP/NCAR reanalysis data in observatory station, the circulation background, vertical movement, abnormal temperature and changes of water vapor conditions in Xuzhou from October 2008 to January 2009 were expounded to reveal the causes for consecutive drought in autumn and winter. [Result] Xuzhou was under stable situation for a long time in autumn and winter in 2008, being behind east coastal trough, the downward airstream prevailing; the south trough intensity was weak, and in addition to the east subtropical high and weak intensity, the water vapor transportation condition in Indian Ocean and South Sea was unfavorable. The autumn was warm and the cold air was weak; ever since winter, there were several cold air activities. But the influencing body was in the east, and the south warm and wet airstream was insufficient. Thus, they couldn’t met, which resulted into gale and lower temperature and less precipitation when under the influence of cold air. [Conclusion] The study provided theoretical basis for the prevention of drought in the area.展开更多
[Objective] The research aimed to analyze the disastrous weather of serious drought in Northwest Hunan in summer and autumn of 2009.[Method] According to the meteorological data in Zhangjiajie of Northwest Hunan durin...[Objective] The research aimed to analyze the disastrous weather of serious drought in Northwest Hunan in summer and autumn of 2009.[Method] According to the meteorological data in Zhangjiajie of Northwest Hunan during the drought period from June to September,2009,the disaster characteristics of continuous drought in summer and autumn were analyzed.Based on NCEP/NCAR 2.5°×2.5° reanalysis data,by using the climatic diagnostic method,the formation reason of serious drought was initially analyzed from the circulation characteristics in the middle and high latitudes,Western Pacific subtropical high,the abnormal characteristics of sea surface temperature in the equatorial Middle Eastern Pacific Ocean and the tropical system activity.[Result] The characteristics of serious drought in Northwest Hunan in summer and autumn of 2009 were the quick developed speed,wide influence range,long duration,big disaster loss and long high temperature time.The influence range,duration and harm degree were rare to see in the history.During the arid period(June-September),the atmospheric circulation was abnormal.The polar vortex in the northern hemisphere was weak,and the center was by north.It was two-trough-one-ridge type in the middle and high latitudes of Eurasia.The long-wave trough existed respectively near Balkhash Lake and from Sea of Okhotsk to the east coast in China.The long-wave ridge maintained from Lake Baikal to Central Asia and stabilized in 90°-110° E of Central Asia.From the middle dekad of June to the middle dekad of September,the westerly index increased.The zonal circulation was the main one in the middle and high latitudes of Eurasia.The cold air in the high-latitude frontal zone spread eastward with the small-amplitude fluctuation form along the latitude circle direction,and was difficult to pass the westerly barrier near 45° N to reach the low latitude.Meanwhile,Western Pacific subtropical high jumped northward to control Jiangnan and South China for a long time.The down airflow was prevalent.It was hot and rainless.The drought developed quickly.The sea surface temperature in the equatorial Middle Eastern Pacific Ocean started to rise in June,and it entered into El Nino state.When El Nino event of obvious temperature increasing started to appear in spring and summer,the plum rain amount was less in the middle and low reaches of Yangtze River in the year or next year.The probability was 80%.In El Nino year,the typhoon was less.In addition,for the influence of strong Western Pacific subtropical high,the landing pathway of typhoon was by east or south.The kind of typhoon had the small role for easing the drought in Northwest Hunan.[Conclusion] The research provided the theory basis for improving the prediction level of short-term climate and the understanding of extreme climate event.展开更多
利用1961—2010年NCEP/NCAR再分析资料和全国753站月平均降水资料,研究了我国西南地区东部秋季干旱的环流特征及其成因。结果表明,西南地区东部秋季降水存在明显的年际和年代际变化。其中,年代际变化主要表现为,在20世纪80年代中后期,...利用1961—2010年NCEP/NCAR再分析资料和全国753站月平均降水资料,研究了我国西南地区东部秋季干旱的环流特征及其成因。结果表明,西南地区东部秋季降水存在明显的年际和年代际变化。其中,年代际变化主要表现为,在20世纪80年代中后期,降水存在由多转少的突变;降水量年际变化则与苏门答腊—西太平洋和热带东太平洋的海温分布存在很好的关系。当苏门答腊—西太平洋和东太平洋海温呈现"+-"异常分布时,引起大气热源的异常,加强哈德莱环流,同时,在南海及孟加拉湾附近激发出异常气旋性环流,而西南地区东部则处于南海气旋性环流外围异常偏北气流控制,削弱了孟加拉湾的水汽输送,从而造成西南地区东部的干旱。通过大气环流模式NCAR CAM3.0(Community Atmosphere Model 3.0)的海温异常试验,验证了上述观测结论。展开更多
基金financially supported by the National Natural Science Foundation of China (NSFC) [grant numbers 42088101 and 41875099]。
文摘Drought often lasts long and is thus closely related to slowly varying external forcing such as sea surface temperature(SST).Here,based on observed precipitation and SST data along with NCEP-DOE reanalysis data,the possible impacts of North Atlantic SST on drought formation in Southwest China are investigated.Results show that northeast-southwest-orientated dipole SST anomalies in the mid-high latitudes of the North Atlantic are closely related to autumn drought in Southwest China;the linear correlation coefficient between them reaches 0.48 during 1979-2020,significant at the 0.001 level.The dipole SST anomalies trigger southeastward-propagating Rossby waves and induce barotropic cyclonic circulation anomalies over India and the western Tibetan Plateau.This enhances the upward motion in northern India and the western Tibetan Plateau and causes a compensating downdraft,reduced precipitation,and consequent drought formation in Southwest China.
基金Supported by Xuzhou Scientific Program (XM09B023)
文摘[Objective] The aim was to study the reasons for consecutive severe droughts in autumn and winter. [Method] By dint of precipitation in the observatory station and NCEP/NCAR reanalysis data in observatory station, the circulation background, vertical movement, abnormal temperature and changes of water vapor conditions in Xuzhou from October 2008 to January 2009 were expounded to reveal the causes for consecutive drought in autumn and winter. [Result] Xuzhou was under stable situation for a long time in autumn and winter in 2008, being behind east coastal trough, the downward airstream prevailing; the south trough intensity was weak, and in addition to the east subtropical high and weak intensity, the water vapor transportation condition in Indian Ocean and South Sea was unfavorable. The autumn was warm and the cold air was weak; ever since winter, there were several cold air activities. But the influencing body was in the east, and the south warm and wet airstream was insufficient. Thus, they couldn’t met, which resulted into gale and lower temperature and less precipitation when under the influence of cold air. [Conclusion] The study provided theoretical basis for the prevention of drought in the area.
文摘[Objective] The research aimed to analyze the disastrous weather of serious drought in Northwest Hunan in summer and autumn of 2009.[Method] According to the meteorological data in Zhangjiajie of Northwest Hunan during the drought period from June to September,2009,the disaster characteristics of continuous drought in summer and autumn were analyzed.Based on NCEP/NCAR 2.5°×2.5° reanalysis data,by using the climatic diagnostic method,the formation reason of serious drought was initially analyzed from the circulation characteristics in the middle and high latitudes,Western Pacific subtropical high,the abnormal characteristics of sea surface temperature in the equatorial Middle Eastern Pacific Ocean and the tropical system activity.[Result] The characteristics of serious drought in Northwest Hunan in summer and autumn of 2009 were the quick developed speed,wide influence range,long duration,big disaster loss and long high temperature time.The influence range,duration and harm degree were rare to see in the history.During the arid period(June-September),the atmospheric circulation was abnormal.The polar vortex in the northern hemisphere was weak,and the center was by north.It was two-trough-one-ridge type in the middle and high latitudes of Eurasia.The long-wave trough existed respectively near Balkhash Lake and from Sea of Okhotsk to the east coast in China.The long-wave ridge maintained from Lake Baikal to Central Asia and stabilized in 90°-110° E of Central Asia.From the middle dekad of June to the middle dekad of September,the westerly index increased.The zonal circulation was the main one in the middle and high latitudes of Eurasia.The cold air in the high-latitude frontal zone spread eastward with the small-amplitude fluctuation form along the latitude circle direction,and was difficult to pass the westerly barrier near 45° N to reach the low latitude.Meanwhile,Western Pacific subtropical high jumped northward to control Jiangnan and South China for a long time.The down airflow was prevalent.It was hot and rainless.The drought developed quickly.The sea surface temperature in the equatorial Middle Eastern Pacific Ocean started to rise in June,and it entered into El Nino state.When El Nino event of obvious temperature increasing started to appear in spring and summer,the plum rain amount was less in the middle and low reaches of Yangtze River in the year or next year.The probability was 80%.In El Nino year,the typhoon was less.In addition,for the influence of strong Western Pacific subtropical high,the landing pathway of typhoon was by east or south.The kind of typhoon had the small role for easing the drought in Northwest Hunan.[Conclusion] The research provided the theory basis for improving the prediction level of short-term climate and the understanding of extreme climate event.
文摘利用1961—2010年NCEP/NCAR再分析资料和全国753站月平均降水资料,研究了我国西南地区东部秋季干旱的环流特征及其成因。结果表明,西南地区东部秋季降水存在明显的年际和年代际变化。其中,年代际变化主要表现为,在20世纪80年代中后期,降水存在由多转少的突变;降水量年际变化则与苏门答腊—西太平洋和热带东太平洋的海温分布存在很好的关系。当苏门答腊—西太平洋和东太平洋海温呈现"+-"异常分布时,引起大气热源的异常,加强哈德莱环流,同时,在南海及孟加拉湾附近激发出异常气旋性环流,而西南地区东部则处于南海气旋性环流外围异常偏北气流控制,削弱了孟加拉湾的水汽输送,从而造成西南地区东部的干旱。通过大气环流模式NCAR CAM3.0(Community Atmosphere Model 3.0)的海温异常试验,验证了上述观测结论。