Based on the state of characteristics of dry warming of modern climate changing,the response of growth,output and quality of main economic crops such as cotton,flax and winter rape and characteristic crop such as vini...Based on the state of characteristics of dry warming of modern climate changing,the response of growth,output and quality of main economic crops such as cotton,flax and winter rape and characteristic crop such as vinifera and apple were discussed.The coping technology for climate changing and measurements for serving the agricultural were provided.展开更多
In the present paper, an experiment was conducted to study the effects of soil moisture content on dry nursery seedling quality in Guangzhou in 1995. Through comparing the difference of dry nursery seedlings and wet n...In the present paper, an experiment was conducted to study the effects of soil moisture content on dry nursery seedling quality in Guangzhou in 1995. Through comparing the difference of dry nursery seedlings and wet nursery seedlings, we found a close relationship between soil moisture content and seedling growth. The seedling emergence of dry nursery seedling was more even, tidy and faster, and the survival rate was higher than that of wet nursery seedling. Dry nursery seedlings had small plant stature, slow leaf stretching speed and low individual seedling dry weight, but had high dry/fresh weight ratio. This was abeneficial factor for seedlings to recover from transplanting shock more quickly. As com-pared with the wet nursery seedlings, dry nursery seedlings had poor rooting ability,but had more vigorous white roots and fewer rust roots. It was the possibly important reasonfor dry nursery seedlings to form strong“explosive force”.展开更多
During the period of dry nursery seedling raising of late double cropping indica rice in South China, both chemical fertilizer and farmyard manure did not show obvious effect on the growth of shoot and root in young s...During the period of dry nursery seedling raising of late double cropping indica rice in South China, both chemical fertilizer and farmyard manure did not show obvious effect on the growth of shoot and root in young seedlings at 4-leaf stage (18-day-old seedling), but had significant effects on root growth in old seedlings with 6-7 leaves (27-day-old seedling) at suitable seeding densities (65-125g m<sup>-2</sup>). There were satistically significant differences (at 0.01 or 0.05 levels)between treatments in root number and rooting ability of root-pruned seedlings.展开更多
Chemical weeding in dry direct seeding fields of single cropping middle-late rice was studied in Huida vegetable farm of Huizhou City in 2012. The main treatment was herbicide( pretilachlor + bensulfuron-methyl,Yang...Chemical weeding in dry direct seeding fields of single cropping middle-late rice was studied in Huida vegetable farm of Huizhou City in 2012. The main treatment was herbicide( pretilachlor + bensulfuron-methyl,Yangguo and butachlor),and the sub-treatment was application method( soil treatments,seedling treatment and integrated treatment). The results showed that 80 g pretilachlor + bensulfuron-methyl( 36% pretilachlor + 4% bensulfuron-methyl) diluted with 50 kg water could be sprayed or 200 g Yangguo( 23. 9% butachlor + 1. 1% bensulfuron-methyl) mixed with 15 kg sandy soil could be broadcasted per 667 m2 on the sowing day or the second day under moist condition of soil,which could effectively control weeds in dry direct seeding fields of single cropping middle-late rice.展开更多
The impacts of climate change on crop yields are receiving renewed interest,with focus on cereals and staple crops at the regional and national scales.Yet,the impacts of climate change on the yields of leguminous crop...The impacts of climate change on crop yields are receiving renewed interest,with focus on cereals and staple crops at the regional and national scales.Yet,the impacts of climate change on the yields of leguminous crops in the local context has not been explored.Thus,an in-depth understanding of climate change in the local context may support the design of locally relevant adaptation responses to current and future climate risks.This study examined the impacts of climate variables(annual rainfall,annual average temperature,rainfall indices(rainfall onset,rainfall cessation,and the length of rainy days),and the number of dry days)on the yields of leguminous crops(groundnuts,cowpeas,and soybeans)in the Guinea Savanna agroecological zone of Ghana during the period of 1989-2020.The data were analysed using Mann-Kendall’s trend,Sen’s slope test,correlation analysis,and Multiple Regression Analysis(MRA).The findings revealed that annual rainfall,annual average temperature,rainfall onset,rainfall cessation,and the length of rainy days,and the number of dry days all showed varied impacts on the yields of groundnuts,cowpeas,and soybeans.The trend analysis detected a marginal decrease in the amount of rainfall,rainfall onset,and the number of dry days from 1989 to 2020(P>0.050).Annual average temperature and the length of rainy days substantially varied(P<0.050)from 1989 to 2020,showing an increasing trend.The findings also showed a marked upward trend for the yields of groundnuts,cowpeas,and soybeans during 2005-2020.The climate variables analysed above increased the yields of groundnuts,cowpeas,and soybeans by 49.0%,55.0%,and 69.0%,respectively.The yields of groundnuts,cowpeas,and soybeans fluctuated with the variability of 30.0%,28.0%,and 27.0%from 2005 to 2020,respectively.The three leguminous crops under study demonstrated unpredictable yields due to the variations of annual rainfall,annual average temperature,rainfall onset,rainfall cessation,the length of rainy days,and the number of dry days,which stressed the need for agricultural diversification,changing planting dates,using improved seed variety,and irrigation to respond to climate change.The results of this study implied that climate change considerably impacts crop production in the Guinea Savanna agroecological zone of Ghana,emphasizing the urgency of locally based and farmer-induced adaptation measures for food security and resilient agricultural systems.展开更多
Accurate nitrogen(N)nutrition diagnosis is essential for improving N use efficiency in crop production.The widely used critical N(Nc)dilution curve traditionally depends solely on agronomic variables,neglecting crop w...Accurate nitrogen(N)nutrition diagnosis is essential for improving N use efficiency in crop production.The widely used critical N(Nc)dilution curve traditionally depends solely on agronomic variables,neglecting crop water status.With three-year field experiments with winter wheat,encompassing two irrigation levels(rainfed and irrigation at jointing and anthesis)and three N levels(0,180,and 270 kg ha1),this study aims to establish a novel approach for determining the Nc dilution curve based on crop cumulative transpiration(T),providing a comprehensive analysis of the interaction between N and water availability.The Nc curves derived from both crop dry matter(DM)and T demonstrated N concentration dilution under different conditions with different parameters.The equation Nc=6.43T0.24 established a consistent relationship across varying irrigation regimes.Independent test results indicated that the nitrogen nutrition index(NNI),calculated from this curve,effectively identifies and quantifies the two sources of N deficiency:insufficient N supply in the soil and insufficient soil water concentration leading to decreased N availability for root absorption.Additionally,the NNI calculated from the Nc-DM and Nc-T curves exhibited a strong negative correlation with accumulated N deficit(Nand)and a positive correlation with relative grain yield(RGY).The NNI derived from the Nc-T curve outperformed the NNI derived from the Nc-DM curve concerning its relationship with Nand and RGY,as indicated by larger R2 values and smaller AIC.The novel Nc curve based on T serves as an effective diagnostic tool for assessing winter wheat N status,predicting grain yield,and optimizing N fertilizer management across varying irrigation conditions.These findings would provide new insights and methods to improve the simulations of water-N interaction relationship in crop growth models.展开更多
To study whether integrative fertilization [growing milk vetch in winter and reducing the dose of chemical nitrogen(N) fertilizer] can improve rice yield, and to reveal the underlying regulatory mechanisms for integra...To study whether integrative fertilization [growing milk vetch in winter and reducing the dose of chemical nitrogen(N) fertilizer] can improve rice yield, and to reveal the underlying regulatory mechanisms for integrative fertilization, a three-year field trial including two treatments, milk vetch-rice-rice(MRR) and winter fallow-rice-rice(FRR), was conducted in 2010, 2011 and 2012.Our results demonstrated that the MRR treatment could significantly improve rice yield compared with the FRR treatment, especially when the application ratio of milk vetch and chemical fertilizer was 1:2.MRR treatment increased the effective panicle number and the spikelet number per panicle.In addition, a higher tillering number, leaf area index, photosynthetic-potential and photosynthetic-potential to grain ratio were observed in MRR treatment, which could provide enough dry matter for yield formation.Moreover, in MRR treatment, we discovered a higher transportation ratio and transformation ratio of dry matter in culm and leaves, and a stronger total sink capacity and spikelet-root bleeding intensity at the heading stage and 15 d after heading.Furthermore, the MRR treatment showed higher total N, phosphorus and potassium uptakes than FRR treatment, which was associated with the higher root dry weight in each soil layers.These results suggest that growing milk vetch in winter can improve rice yield under less chemical N fertilizer application, which is due to the improvement of soil nutrient status and the increased of rice root growth and development.展开更多
Six middle-season indica hybrid rice combinations, including five super hybrid rice combinations with the high yield about 10.5 t/ha and a check hybrid rice combination Shanyou 63 with a yield potential about 9.5 t/ha...Six middle-season indica hybrid rice combinations, including five super hybrid rice combinations with the high yield about 10.5 t/ha and a check hybrid rice combination Shanyou 63 with a yield potential about 9.5 t/ha, were used as materials to study the dry matter production characteristics. The super hybrid rice showed a high ability in dry matter production and accumulation and its yield enhanced with the increase of dry matter accumulation. The advantage period of dry matter production in the super hybrid rice was mainly at the middle and late growth stages compared with the check. The grain yield had no significant correlation with the dry matter accumulation before the elongation stage while had a significantly positive correlation with the dry matter accumulation from the elongation to maturity stages in super hybrid rice. There were more dry matter in vegetative organs at the heading stage in the super hybrid rice but its contribution to yield (apparent conversion percentage) was averagely 4.3 percent points lower than that in the check. For crop growth rate (CGR), the comparative advantage of super hybrid rice was at the middle and late stages, especially after flowering. Moreover, as the rising of leaf area index (LAI) and leaf area duration (LAD), CGR enhanced. The total LAD and the mean of lAD per day of super hybrid rice was about 14.79% and 10.31% higher than those of the check, respectively. The results indicate that the high yield of super hybrid rice mostly comes from the products of photosynthesis after heading, which is shown by the increased CGR at middle and later stages. It is suggested that LAD character might be used to better explain the advantage in the dry matter production of super hybrid rice than LAI.展开更多
Direct seeded rice is promising alternative to traditional transplanting, but requires appropriate crop and water management to maintain yield performance and achieve high water productivity. Present study evaluated t...Direct seeded rice is promising alternative to traditional transplanting, but requires appropriate crop and water management to maintain yield performance and achieve high water productivity. Present study evaluated the effect of seed priming and irrigation on crop establishment, tillering, agronomic traits, paddy yield, grain quality and water productivity of direct seeded rice in alternate wetting and drying (DSR-AWD) in comparison with direct seeded rice at field capacity (DSR- FC). Seed priming treatments were osmo-priming with KCI (2.2%), CaCI2 (2.2%) and moringa leaf extracts (MLE, 3.3%) including hydro-priming as control. Among the treatments, seed osmo-primed with MLE emerged earlier and had higher final emergence, followed by osmo-priming with CaCI2. Tillering emergence rate and number of tillers per plant were the highest for seed priming with CaCI2 in DSR- AWD. Total productive and non-productive tillers, panicle length, biological and grain yields, harvest index were highest for seed priming with MLE or CaCI2 in DSR-AWD. Similarly, grain quality, estimated in terms of normal grains, abortive and chalky grains, was also the highest in DSR-AWD with MLE osmo-priming. Benefit cost ratio and water productivity was also the highest in DSR-AWD for seed priming with MLE. In conclusion, seed priming with MLE or CaCI2 can be successfully employed to improve the direct seeded rice performance when practiced with alternate wetting and drying irrigation.展开更多
The lower Ili River Basin is located in semi-arid area, and the annual rainfall is 177mm. Therefore, the irrigation is inevitable for agriculture. Large-scale irrigated agriculture had been developed since 1960's in ...The lower Ili River Basin is located in semi-arid area, and the annual rainfall is 177mm. Therefore, the irrigation is inevitable for agriculture. Large-scale irrigated agriculture had been developed since 1960's in the lower parts of the river and the total irrigated area is about 32 000 hm2. In the project area, the paddy rice-upland crop rotation has been practiced. Due to the domestic water use for hydropower and agriculture as well as water use among riparian countries, the deficit of water for agriculture in the lower part has been concerned. The authors, therefore, conducted the field survey and water balance analysis of the Akdara irrigation project in the lower Ill River Basin in order to assess the land and water uses. Moreover, the impact of the water use on water environment to the basin was analyzed. The following results were obtained as following (1) the groundwater level in the irrigated district varied from 1.5 m to 3.5 m through year. (2) 1970's groundwater level was drastically raised from 8 m to 3 m and the groundwater had been recharged in this period. (3) Water use efficiency of agriculture, which is the ratio of total evapotranspiration to the total water withdrawal was as low as 0.23.展开更多
Based on the observed soil water data from experimental site located in southeast of Shanxi Province, the physical characteristics of soil water, crop effect on soil moisture, and the field water circulation pattern w...Based on the observed soil water data from experimental site located in southeast of Shanxi Province, the physical characteristics of soil water, crop effect on soil moisture, and the field water circulation pattern were studied by using the water balance method. The results suggested that soil water deficit often exists in fields of these areas. From May to June, the amount of water deficit in bare land rises to the maximum (232 8 mm) and falls to the minimum (66 6 mm) from August to September. By comparison, because of crop transpiration, both soil water deficit and dry soil layer in cultivated land are 15 1—40 4 mm more and 20—70 mm deeper respectively than those of bare land. Crops mainly planted in these areas have a relatively weak utilization ability to soil water. Winter wheat has the highest utilization ability to soil water among the crops planted in these areas. The soil water utilization ability of winter wheat is 26 2%—30 6% and winter wheat can use soil water that lies in soil layer below a depth of over 200 cm. Spring corn and millet can only consume soil water with the maximum ability of 13 4% and the deepest layer of 0—50 cm or 0—100cm, which shows that the soil water utilization ability of winter wheat is higher than that of spring crops. After crop is ripe, more than 41% of available soil water remains unused in field. So, increasing soil water storage and improving crop utilization ability to soil water by adopting efficient agrotechnique measures are the main ways for improving agricultural productivity in dry farming areas of Northern China.展开更多
Six field studies were completed in Ontario (during 2016 to 2018) to assess the tolerance of adzuki, kidney, small red and navy bean to 2,4-D ester at 528 or 1056 g·ai·ha-1 applied 14, 7 and 1 da...Six field studies were completed in Ontario (during 2016 to 2018) to assess the tolerance of adzuki, kidney, small red and navy bean to 2,4-D ester at 528 or 1056 g·ai·ha-1 applied 14, 7 and 1 day before seeding (PP) and 3 days after seeding (PRE). 2,4-D applied PP or PRE caused as much as 4%, 6%, 7% and 8% injury in adzuki, kidney, small red and navy (white) bean, respectively. There was an increase in bean injury as the preplant interval decreased. At 1 WAE, 2,4-D applied at 1056 g·ai·ha-1 14, 7 and 1 day PP and 3 days after seeding caused up to 6%, 10%, 18% and 5% visible bean injury, respectively. The level of injury decreased over time with minimal bean injury (0 to 3%) at 8 WAE. Bean stand counts were similar to the non-treated control with 2,4-D applied at various timings except at 1 day PP when 2,4-D at the 2X rate decreased bean stand 13%. There was up to 23% and 43% decrease in bean dry weight with 2,4-D applied PP at 528 and 1056 g·ai·ha-1 7 and 1 day PP, respectively. Bean height (6 WAE) was not affected by 2,4-D applied at various timings except at 1 day PP when 2,4-D (1056 g·ai·ha-1) decreased bean height 10%. Additionally, there was no effect of 2,4-D treatments on bean maturity or yield. Based on these results, the safest times to apply 2,4-D are 14 days before seeding or PRE. Injury was higher when 2,4-D was applied 7 and 1 day PP. Injury was lower in adzuki bean compared to kidney, small red or navy bean.展开更多
The impact of four spacing of cooking banana (CB) within the immature rubber avenues on some soil fertility attributes, maturity rate of rubber trees and dry rubber content (DRC) during the initial six years after pla...The impact of four spacing of cooking banana (CB) within the immature rubber avenues on some soil fertility attributes, maturity rate of rubber trees and dry rubber content (DRC) during the initial six years after planting (YAP) were evaluated in a humid forest area of South Eastern Nigeria relative to sole rubber. The CB spacings within immature rubber avenues were 6.7 × 3.4 m;4.0 × 2.0 m, 3.0 × 3.0 m and 2.0 × 2.0 m, while the sole rubber was at 6.7 × 3.4 m, all laid out in randomized complete block design with five replications. Quantities of soil organic C, extractable P, Ca, Mg and earthworm activities were significantly higher in the intercrops, with the highest value coming from the 4 × 2 m CB spaced plots. However a significantly higher value of K stock was observed in the sole rubber plot and declined as the CB spacing narrowed. While the highest proportion (>90%) of matured hevea tree at six YAP was observed in the 2 × 2 m CB spaced plots;the highest DRC of 1.7 t?ha–1?yr–1 was obtained from CB 4 × 2 m treatment. Consequently, with some of the observed soil fertility attributes and DRC recorded, 4 × 2 m CB spacing seems to be a more suitable CB spacings within immature rubber avenues, especially in view of the levels of K in the 2 × 2 CB plots.展开更多
Piliostigma reticulatum is a native woody shrub found in cropped fields in the Sahel and has been shown to increase crop productivity and soil quality. Frequently occurring drying and rewetting cycles (DRW) may alter ...Piliostigma reticulatum is a native woody shrub found in cropped fields in the Sahel and has been shown to increase crop productivity and soil quality. Frequently occurring drying and rewetting cycles (DRW) may alter the soil quality beneath these shrubs. We investigated the effect of DRW cycles on microbial community in soil beneath and outside the P. reticulatum canopy and the roles of this shrub in the adaptation of the microbial community to abiotic stress. Soils were incubated in a climate controlled chamber for 45 days, after exposure to 10 consecutive days of DRW cycles at 75% of water holding capacity (WHC). Basal respiration, β-glucosidase activity, microbial biomass carbon (MBC), and available nitrogen (;) were measured at 2, 30, and 45 days after soil exposed to the DRW cycles. MBC increased significantly two days after the DRW cycles and was greater for soil beneath the shrub canopy compared with soil outside the shrub canopy. PCA analysis based on basal respiration, microbial biomass carbon, available nitrogen, and β-Glucosidase activity resulted in a tight clustering in the beneath shrub soil samples. Soils incubated for more than 30 days after DRW cycles had higher available nitrogen content than soils incubated for less than 30 days. Soil from beneath the shrub canopy significantly improved soil resilience based on β-glucosidase activity. Soil from beneath the shrub canopy also had higher nutrient levels and greater microbial activity even when subjected to DRW cycles, potentially improving the ability of crops to withstand in-season drought when they are adjacent to shrubs. The work should bring our scientific community into a more comprehensive assessment of potential effects of a crop-shrub intercropping that may allow for increased crop yields in semi-arid ecosystems under drought conditions.展开更多
This paper examines how farmers in central Lombok have organized themselves to manage agricultural water colle- ctively and to adapt to seasonally dry conditions. We interviewed eighteen village heads from October to ...This paper examines how farmers in central Lombok have organized themselves to manage agricultural water colle- ctively and to adapt to seasonally dry conditions. We interviewed eighteen village heads from October to December 2006. One of our questions we posed prior to field interviews was what might be the social and technical coping strategies that have allowed farmers to survive the lengthy dry seasons under the high population density of Lombok island. Some examples of organizational structure and practices in Central Lombok are presented. There were several common water management strategies that were revealed from these interviews including: methods of organization, flexible cropping systems, water allocation mechanisms, methods of compromise, alternative payments, and traditional water management practices. The statistical analysis comparing village characteristics and coping strategies suggests a relation between mosque number per village and farmers ability to cope. Farmers have shown their own unique coping strategies in times of water shortages and under decentralization occurring over the past decade. This decentralization involved turning over small scale irrigation systems (under 500 hectares), to the water user associations themselves in order to facilitate more efficient management and maintenance.展开更多
It is ordinarily common for forage production in southern Kyushu to adopt a double cropping system, composed of summer forage crops (e.g. maize and sorghum) cultivated from late March to early September, and winter gr...It is ordinarily common for forage production in southern Kyushu to adopt a double cropping system, composed of summer forage crops (e.g. maize and sorghum) cultivated from late March to early September, and winter grass crops (e.g. Italian ryegrass (IR) and oat) from mid-October to the following May. However, if high total digestible nutrient (TDN) production is aimed to introduce winter cereal crops (e.g. wheat and barley) as a replacement of IR, it is necessary to cultivate tropical grass, which has a rapid-growth potential with high crude protein (CP) concentration in a switching period between summer and winter crops. In this study, teff (Eragrostis tef) was tried to evaluate as a candidate crop in the switching period. Yield and quality of two types of triple forage cropping system were determined under maize-teff-barley and maize-teff-wheat in the first and second year, respectively. Compared with the normal year, summer temperature was higher and summer and winter precipitations were lower in the first year, while no climatic disorder was observed in the second year. Even though dry matter yield of teff was minimal in the present system due to weed damage, CP concentration was the highest among crops and TDN yields of the present cropping system tended to be higher in the second year with no drought stress than in the conventional maize-IR system in the region.展开更多
A double-cropping field study was conducted at the Colorado State University, Fruita. Colorado USA to evaluate an irrigated, double-cropping system of winter barley (Hordeum vulgare L.) followed by pinto bean (Phas...A double-cropping field study was conducted at the Colorado State University, Fruita. Colorado USA to evaluate an irrigated, double-cropping system of winter barley (Hordeum vulgare L.) followed by pinto bean (Phaseolus vutgaris L.) for the valley areas of western Colorado USA and other similar environments. Double-cropping pinto bean after winter barley was successful, but to use our double-cropping technology in commercial agriculture in adapted locations will likely require identifying or developing a winter barley cultivar that matures earlier than current cultivars but does not head and flower so early that it is susceptible to freeze damage. Double-cropping was more profitable in all three years than growing either pinto bean or winter barley as a sole crop.展开更多
Slope farmland is a main type of agricultural land throughout northeast China.Long-term high intensity utilization and unreasonable farming have caused the deterioration of soil resources and a decrease in crop produc...Slope farmland is a main type of agricultural land throughout northeast China.Long-term high intensity utilization and unreasonable farming have caused the deterioration of soil resources and a decrease in crop production.Here,it was hypothesized that crop straw incorporation might help to reduce nutrient losses and increase maize yields across time and space.A field experiment for testing straw management practices on maize across three slope positions(top,back and bottom slopes)was conducted in Northeast China in 2018 and 2019.In this study,the dry matter accumulation(DMA),N accumulation(NA),N remobilization,postsilking N uptake and grain yield were measured under SI(straw incorporation)and NSI(no straw incorporation)across three slope positions of 100-m-long consecutive black soil slope farmland during the maize(Zea mays L.)growth stages.Compared with NSI,SI significantly increased DMA and NA at the silking and maturity stages.SI typically increased the N remobilization in all slope positions,and significantly increased N remobilization efficiency and contribution of N remobilization to grain on the back and bottom slopes.However,post-silking N uptake was only increased by SI on the top slope.SI generally increased the crop yield in three slope positions.In the SI treatments,the bottom slope was the highest yield position,followed by the top,and then the back slopes,suggesting that the bottom slope position of regularly incorporated straw might have increased the potential for boosting maize yield.Overall,the study demonstrated the outsized potential of straw incorporation to enhance maize NA and then increase the grain yield in black soil slope farmland.展开更多
基金Supported by Special Fund of Public Industry from Ministry of Science and Technology (GYHY200806021)National Natural Science Foundation Emphases Item of China (40830957)+2 种基金Project of Researches on Drought Meteorological Science (IAM200811)Special Fund for Climatic Change in China Meteorological Bureau (CCSS-09-14)Technology-aid Project in Gansu (090NKCA118)~~
文摘Based on the state of characteristics of dry warming of modern climate changing,the response of growth,output and quality of main economic crops such as cotton,flax and winter rape and characteristic crop such as vinifera and apple were discussed.The coping technology for climate changing and measurements for serving the agricultural were provided.
文摘In the present paper, an experiment was conducted to study the effects of soil moisture content on dry nursery seedling quality in Guangzhou in 1995. Through comparing the difference of dry nursery seedlings and wet nursery seedlings, we found a close relationship between soil moisture content and seedling growth. The seedling emergence of dry nursery seedling was more even, tidy and faster, and the survival rate was higher than that of wet nursery seedling. Dry nursery seedlings had small plant stature, slow leaf stretching speed and low individual seedling dry weight, but had high dry/fresh weight ratio. This was abeneficial factor for seedlings to recover from transplanting shock more quickly. As com-pared with the wet nursery seedlings, dry nursery seedlings had poor rooting ability,but had more vigorous white roots and fewer rust roots. It was the possibly important reasonfor dry nursery seedlings to form strong“explosive force”.
文摘During the period of dry nursery seedling raising of late double cropping indica rice in South China, both chemical fertilizer and farmyard manure did not show obvious effect on the growth of shoot and root in young seedlings at 4-leaf stage (18-day-old seedling), but had significant effects on root growth in old seedlings with 6-7 leaves (27-day-old seedling) at suitable seeding densities (65-125g m<sup>-2</sup>). There were satistically significant differences (at 0.01 or 0.05 levels)between treatments in root number and rooting ability of root-pruned seedlings.
基金Supported by National Science and Technology Support Program(2007BAD89B14)Special Fund for Agro-scientific Research in the PublicInterest(00803028)+3 种基金Major Technical Research Project of Ministry of Agriculture for Agricultural Structure Adjustment(06-03-07B)Project ofGuangdong Provincial Finance Department(YCY[2005]No.11,YCJ[2006]No.187)Agricultural Research Project of Guangdong ProvincialScience and Technology Department(2005B20101001)Special Fund forAgro-scientific Research in the Public Interest(201103001)
文摘Chemical weeding in dry direct seeding fields of single cropping middle-late rice was studied in Huida vegetable farm of Huizhou City in 2012. The main treatment was herbicide( pretilachlor + bensulfuron-methyl,Yangguo and butachlor),and the sub-treatment was application method( soil treatments,seedling treatment and integrated treatment). The results showed that 80 g pretilachlor + bensulfuron-methyl( 36% pretilachlor + 4% bensulfuron-methyl) diluted with 50 kg water could be sprayed or 200 g Yangguo( 23. 9% butachlor + 1. 1% bensulfuron-methyl) mixed with 15 kg sandy soil could be broadcasted per 667 m2 on the sowing day or the second day under moist condition of soil,which could effectively control weeds in dry direct seeding fields of single cropping middle-late rice.
文摘The impacts of climate change on crop yields are receiving renewed interest,with focus on cereals and staple crops at the regional and national scales.Yet,the impacts of climate change on the yields of leguminous crops in the local context has not been explored.Thus,an in-depth understanding of climate change in the local context may support the design of locally relevant adaptation responses to current and future climate risks.This study examined the impacts of climate variables(annual rainfall,annual average temperature,rainfall indices(rainfall onset,rainfall cessation,and the length of rainy days),and the number of dry days)on the yields of leguminous crops(groundnuts,cowpeas,and soybeans)in the Guinea Savanna agroecological zone of Ghana during the period of 1989-2020.The data were analysed using Mann-Kendall’s trend,Sen’s slope test,correlation analysis,and Multiple Regression Analysis(MRA).The findings revealed that annual rainfall,annual average temperature,rainfall onset,rainfall cessation,and the length of rainy days,and the number of dry days all showed varied impacts on the yields of groundnuts,cowpeas,and soybeans.The trend analysis detected a marginal decrease in the amount of rainfall,rainfall onset,and the number of dry days from 1989 to 2020(P>0.050).Annual average temperature and the length of rainy days substantially varied(P<0.050)from 1989 to 2020,showing an increasing trend.The findings also showed a marked upward trend for the yields of groundnuts,cowpeas,and soybeans during 2005-2020.The climate variables analysed above increased the yields of groundnuts,cowpeas,and soybeans by 49.0%,55.0%,and 69.0%,respectively.The yields of groundnuts,cowpeas,and soybeans fluctuated with the variability of 30.0%,28.0%,and 27.0%from 2005 to 2020,respectively.The three leguminous crops under study demonstrated unpredictable yields due to the variations of annual rainfall,annual average temperature,rainfall onset,rainfall cessation,the length of rainy days,and the number of dry days,which stressed the need for agricultural diversification,changing planting dates,using improved seed variety,and irrigation to respond to climate change.The results of this study implied that climate change considerably impacts crop production in the Guinea Savanna agroecological zone of Ghana,emphasizing the urgency of locally based and farmer-induced adaptation measures for food security and resilient agricultural systems.
基金supported by the National Key Research and Development Program of China(2022YFD2001005)the Key Research&Development Program of Jiangsu province(BE2021358)+2 种基金the National Natural Science Foundation of China(32271989)the Natural Science Foundation of Jiangsu province(BK20220146)the Jiangsu Independent Innovation Fund Project of Agricultural Science and Technology[CX(23)3121].
文摘Accurate nitrogen(N)nutrition diagnosis is essential for improving N use efficiency in crop production.The widely used critical N(Nc)dilution curve traditionally depends solely on agronomic variables,neglecting crop water status.With three-year field experiments with winter wheat,encompassing two irrigation levels(rainfed and irrigation at jointing and anthesis)and three N levels(0,180,and 270 kg ha1),this study aims to establish a novel approach for determining the Nc dilution curve based on crop cumulative transpiration(T),providing a comprehensive analysis of the interaction between N and water availability.The Nc curves derived from both crop dry matter(DM)and T demonstrated N concentration dilution under different conditions with different parameters.The equation Nc=6.43T0.24 established a consistent relationship across varying irrigation regimes.Independent test results indicated that the nitrogen nutrition index(NNI),calculated from this curve,effectively identifies and quantifies the two sources of N deficiency:insufficient N supply in the soil and insufficient soil water concentration leading to decreased N availability for root absorption.Additionally,the NNI calculated from the Nc-DM and Nc-T curves exhibited a strong negative correlation with accumulated N deficit(Nand)and a positive correlation with relative grain yield(RGY).The NNI derived from the Nc-T curve outperformed the NNI derived from the Nc-DM curve concerning its relationship with Nand and RGY,as indicated by larger R2 values and smaller AIC.The novel Nc curve based on T serves as an effective diagnostic tool for assessing winter wheat N status,predicting grain yield,and optimizing N fertilizer management across varying irrigation conditions.These findings would provide new insights and methods to improve the simulations of water-N interaction relationship in crop growth models.
基金supported by the National Key Technology Research and Development Program(Grant No.2013BAD07B12)the grant from Jiangxi Province(555 Talents Program)
文摘To study whether integrative fertilization [growing milk vetch in winter and reducing the dose of chemical nitrogen(N) fertilizer] can improve rice yield, and to reveal the underlying regulatory mechanisms for integrative fertilization, a three-year field trial including two treatments, milk vetch-rice-rice(MRR) and winter fallow-rice-rice(FRR), was conducted in 2010, 2011 and 2012.Our results demonstrated that the MRR treatment could significantly improve rice yield compared with the FRR treatment, especially when the application ratio of milk vetch and chemical fertilizer was 1:2.MRR treatment increased the effective panicle number and the spikelet number per panicle.In addition, a higher tillering number, leaf area index, photosynthetic-potential and photosynthetic-potential to grain ratio were observed in MRR treatment, which could provide enough dry matter for yield formation.Moreover, in MRR treatment, we discovered a higher transportation ratio and transformation ratio of dry matter in culm and leaves, and a stronger total sink capacity and spikelet-root bleeding intensity at the heading stage and 15 d after heading.Furthermore, the MRR treatment showed higher total N, phosphorus and potassium uptakes than FRR treatment, which was associated with the higher root dry weight in each soil layers.These results suggest that growing milk vetch in winter can improve rice yield under less chemical N fertilizer application, which is due to the improvement of soil nutrient status and the increased of rice root growth and development.
基金the State Science and Technology Program of Grain Harvests in China (Grant Nos. 2006BAD02A06 and 2006BAD02A04)
文摘Six middle-season indica hybrid rice combinations, including five super hybrid rice combinations with the high yield about 10.5 t/ha and a check hybrid rice combination Shanyou 63 with a yield potential about 9.5 t/ha, were used as materials to study the dry matter production characteristics. The super hybrid rice showed a high ability in dry matter production and accumulation and its yield enhanced with the increase of dry matter accumulation. The advantage period of dry matter production in the super hybrid rice was mainly at the middle and late growth stages compared with the check. The grain yield had no significant correlation with the dry matter accumulation before the elongation stage while had a significantly positive correlation with the dry matter accumulation from the elongation to maturity stages in super hybrid rice. There were more dry matter in vegetative organs at the heading stage in the super hybrid rice but its contribution to yield (apparent conversion percentage) was averagely 4.3 percent points lower than that in the check. For crop growth rate (CGR), the comparative advantage of super hybrid rice was at the middle and late stages, especially after flowering. Moreover, as the rising of leaf area index (LAI) and leaf area duration (LAD), CGR enhanced. The total LAD and the mean of lAD per day of super hybrid rice was about 14.79% and 10.31% higher than those of the check, respectively. The results indicate that the high yield of super hybrid rice mostly comes from the products of photosynthesis after heading, which is shown by the increased CGR at middle and later stages. It is suggested that LAD character might be used to better explain the advantage in the dry matter production of super hybrid rice than LAI.
文摘Direct seeded rice is promising alternative to traditional transplanting, but requires appropriate crop and water management to maintain yield performance and achieve high water productivity. Present study evaluated the effect of seed priming and irrigation on crop establishment, tillering, agronomic traits, paddy yield, grain quality and water productivity of direct seeded rice in alternate wetting and drying (DSR-AWD) in comparison with direct seeded rice at field capacity (DSR- FC). Seed priming treatments were osmo-priming with KCI (2.2%), CaCI2 (2.2%) and moringa leaf extracts (MLE, 3.3%) including hydro-priming as control. Among the treatments, seed osmo-primed with MLE emerged earlier and had higher final emergence, followed by osmo-priming with CaCI2. Tillering emergence rate and number of tillers per plant were the highest for seed priming with CaCI2 in DSR- AWD. Total productive and non-productive tillers, panicle length, biological and grain yields, harvest index were highest for seed priming with MLE or CaCI2 in DSR-AWD. Similarly, grain quality, estimated in terms of normal grains, abortive and chalky grains, was also the highest in DSR-AWD with MLE osmo-priming. Benefit cost ratio and water productivity was also the highest in DSR-AWD for seed priming with MLE. In conclusion, seed priming with MLE or CaCI2 can be successfully employed to improve the direct seeded rice performance when practiced with alternate wetting and drying irrigation.
基金Supported by Global COE Program (Global Center of Excellence for Dryland Science) Funded by MEXT"Historical Interactions between the Multi-Cultural Societies and the Natural Environment in a Semi-Arid Region in Central Eurasia" Project Funded by Research Institute for Humanity and Nature, Japan
文摘The lower Ili River Basin is located in semi-arid area, and the annual rainfall is 177mm. Therefore, the irrigation is inevitable for agriculture. Large-scale irrigated agriculture had been developed since 1960's in the lower parts of the river and the total irrigated area is about 32 000 hm2. In the project area, the paddy rice-upland crop rotation has been practiced. Due to the domestic water use for hydropower and agriculture as well as water use among riparian countries, the deficit of water for agriculture in the lower part has been concerned. The authors, therefore, conducted the field survey and water balance analysis of the Akdara irrigation project in the lower Ill River Basin in order to assess the land and water uses. Moreover, the impact of the water use on water environment to the basin was analyzed. The following results were obtained as following (1) the groundwater level in the irrigated district varied from 1.5 m to 3.5 m through year. (2) 1970's groundwater level was drastically raised from 8 m to 3 m and the groundwater had been recharged in this period. (3) Water use efficiency of agriculture, which is the ratio of total evapotranspiration to the total water withdrawal was as low as 0.23.
文摘Based on the observed soil water data from experimental site located in southeast of Shanxi Province, the physical characteristics of soil water, crop effect on soil moisture, and the field water circulation pattern were studied by using the water balance method. The results suggested that soil water deficit often exists in fields of these areas. From May to June, the amount of water deficit in bare land rises to the maximum (232 8 mm) and falls to the minimum (66 6 mm) from August to September. By comparison, because of crop transpiration, both soil water deficit and dry soil layer in cultivated land are 15 1—40 4 mm more and 20—70 mm deeper respectively than those of bare land. Crops mainly planted in these areas have a relatively weak utilization ability to soil water. Winter wheat has the highest utilization ability to soil water among the crops planted in these areas. The soil water utilization ability of winter wheat is 26 2%—30 6% and winter wheat can use soil water that lies in soil layer below a depth of over 200 cm. Spring corn and millet can only consume soil water with the maximum ability of 13 4% and the deepest layer of 0—50 cm or 0—100cm, which shows that the soil water utilization ability of winter wheat is higher than that of spring crops. After crop is ripe, more than 41% of available soil water remains unused in field. So, increasing soil water storage and improving crop utilization ability to soil water by adopting efficient agrotechnique measures are the main ways for improving agricultural productivity in dry farming areas of Northern China.
文摘Six field studies were completed in Ontario (during 2016 to 2018) to assess the tolerance of adzuki, kidney, small red and navy bean to 2,4-D ester at 528 or 1056 g·ai·ha-1 applied 14, 7 and 1 day before seeding (PP) and 3 days after seeding (PRE). 2,4-D applied PP or PRE caused as much as 4%, 6%, 7% and 8% injury in adzuki, kidney, small red and navy (white) bean, respectively. There was an increase in bean injury as the preplant interval decreased. At 1 WAE, 2,4-D applied at 1056 g·ai·ha-1 14, 7 and 1 day PP and 3 days after seeding caused up to 6%, 10%, 18% and 5% visible bean injury, respectively. The level of injury decreased over time with minimal bean injury (0 to 3%) at 8 WAE. Bean stand counts were similar to the non-treated control with 2,4-D applied at various timings except at 1 day PP when 2,4-D at the 2X rate decreased bean stand 13%. There was up to 23% and 43% decrease in bean dry weight with 2,4-D applied PP at 528 and 1056 g·ai·ha-1 7 and 1 day PP, respectively. Bean height (6 WAE) was not affected by 2,4-D applied at various timings except at 1 day PP when 2,4-D (1056 g·ai·ha-1) decreased bean height 10%. Additionally, there was no effect of 2,4-D treatments on bean maturity or yield. Based on these results, the safest times to apply 2,4-D are 14 days before seeding or PRE. Injury was higher when 2,4-D was applied 7 and 1 day PP. Injury was lower in adzuki bean compared to kidney, small red or navy bean.
文摘The impact of four spacing of cooking banana (CB) within the immature rubber avenues on some soil fertility attributes, maturity rate of rubber trees and dry rubber content (DRC) during the initial six years after planting (YAP) were evaluated in a humid forest area of South Eastern Nigeria relative to sole rubber. The CB spacings within immature rubber avenues were 6.7 × 3.4 m;4.0 × 2.0 m, 3.0 × 3.0 m and 2.0 × 2.0 m, while the sole rubber was at 6.7 × 3.4 m, all laid out in randomized complete block design with five replications. Quantities of soil organic C, extractable P, Ca, Mg and earthworm activities were significantly higher in the intercrops, with the highest value coming from the 4 × 2 m CB spaced plots. However a significantly higher value of K stock was observed in the sole rubber plot and declined as the CB spacing narrowed. While the highest proportion (>90%) of matured hevea tree at six YAP was observed in the 2 × 2 m CB spaced plots;the highest DRC of 1.7 t?ha–1?yr–1 was obtained from CB 4 × 2 m treatment. Consequently, with some of the observed soil fertility attributes and DRC recorded, 4 × 2 m CB spacing seems to be a more suitable CB spacings within immature rubber avenues, especially in view of the levels of K in the 2 × 2 CB plots.
文摘Piliostigma reticulatum is a native woody shrub found in cropped fields in the Sahel and has been shown to increase crop productivity and soil quality. Frequently occurring drying and rewetting cycles (DRW) may alter the soil quality beneath these shrubs. We investigated the effect of DRW cycles on microbial community in soil beneath and outside the P. reticulatum canopy and the roles of this shrub in the adaptation of the microbial community to abiotic stress. Soils were incubated in a climate controlled chamber for 45 days, after exposure to 10 consecutive days of DRW cycles at 75% of water holding capacity (WHC). Basal respiration, β-glucosidase activity, microbial biomass carbon (MBC), and available nitrogen (;) were measured at 2, 30, and 45 days after soil exposed to the DRW cycles. MBC increased significantly two days after the DRW cycles and was greater for soil beneath the shrub canopy compared with soil outside the shrub canopy. PCA analysis based on basal respiration, microbial biomass carbon, available nitrogen, and β-Glucosidase activity resulted in a tight clustering in the beneath shrub soil samples. Soils incubated for more than 30 days after DRW cycles had higher available nitrogen content than soils incubated for less than 30 days. Soil from beneath the shrub canopy significantly improved soil resilience based on β-glucosidase activity. Soil from beneath the shrub canopy also had higher nutrient levels and greater microbial activity even when subjected to DRW cycles, potentially improving the ability of crops to withstand in-season drought when they are adjacent to shrubs. The work should bring our scientific community into a more comprehensive assessment of potential effects of a crop-shrub intercropping that may allow for increased crop yields in semi-arid ecosystems under drought conditions.
文摘This paper examines how farmers in central Lombok have organized themselves to manage agricultural water colle- ctively and to adapt to seasonally dry conditions. We interviewed eighteen village heads from October to December 2006. One of our questions we posed prior to field interviews was what might be the social and technical coping strategies that have allowed farmers to survive the lengthy dry seasons under the high population density of Lombok island. Some examples of organizational structure and practices in Central Lombok are presented. There were several common water management strategies that were revealed from these interviews including: methods of organization, flexible cropping systems, water allocation mechanisms, methods of compromise, alternative payments, and traditional water management practices. The statistical analysis comparing village characteristics and coping strategies suggests a relation between mosque number per village and farmers ability to cope. Farmers have shown their own unique coping strategies in times of water shortages and under decentralization occurring over the past decade. This decentralization involved turning over small scale irrigation systems (under 500 hectares), to the water user associations themselves in order to facilitate more efficient management and maintenance.
文摘It is ordinarily common for forage production in southern Kyushu to adopt a double cropping system, composed of summer forage crops (e.g. maize and sorghum) cultivated from late March to early September, and winter grass crops (e.g. Italian ryegrass (IR) and oat) from mid-October to the following May. However, if high total digestible nutrient (TDN) production is aimed to introduce winter cereal crops (e.g. wheat and barley) as a replacement of IR, it is necessary to cultivate tropical grass, which has a rapid-growth potential with high crude protein (CP) concentration in a switching period between summer and winter crops. In this study, teff (Eragrostis tef) was tried to evaluate as a candidate crop in the switching period. Yield and quality of two types of triple forage cropping system were determined under maize-teff-barley and maize-teff-wheat in the first and second year, respectively. Compared with the normal year, summer temperature was higher and summer and winter precipitations were lower in the first year, while no climatic disorder was observed in the second year. Even though dry matter yield of teff was minimal in the present system due to weed damage, CP concentration was the highest among crops and TDN yields of the present cropping system tended to be higher in the second year with no drought stress than in the conventional maize-IR system in the region.
文摘A double-cropping field study was conducted at the Colorado State University, Fruita. Colorado USA to evaluate an irrigated, double-cropping system of winter barley (Hordeum vulgare L.) followed by pinto bean (Phaseolus vutgaris L.) for the valley areas of western Colorado USA and other similar environments. Double-cropping pinto bean after winter barley was successful, but to use our double-cropping technology in commercial agriculture in adapted locations will likely require identifying or developing a winter barley cultivar that matures earlier than current cultivars but does not head and flower so early that it is susceptible to freeze damage. Double-cropping was more profitable in all three years than growing either pinto bean or winter barley as a sole crop.
基金Supported by the Special Fund for Agro-scientific Research in Public Interest in China(201503119-06-01)。
文摘Slope farmland is a main type of agricultural land throughout northeast China.Long-term high intensity utilization and unreasonable farming have caused the deterioration of soil resources and a decrease in crop production.Here,it was hypothesized that crop straw incorporation might help to reduce nutrient losses and increase maize yields across time and space.A field experiment for testing straw management practices on maize across three slope positions(top,back and bottom slopes)was conducted in Northeast China in 2018 and 2019.In this study,the dry matter accumulation(DMA),N accumulation(NA),N remobilization,postsilking N uptake and grain yield were measured under SI(straw incorporation)and NSI(no straw incorporation)across three slope positions of 100-m-long consecutive black soil slope farmland during the maize(Zea mays L.)growth stages.Compared with NSI,SI significantly increased DMA and NA at the silking and maturity stages.SI typically increased the N remobilization in all slope positions,and significantly increased N remobilization efficiency and contribution of N remobilization to grain on the back and bottom slopes.However,post-silking N uptake was only increased by SI on the top slope.SI generally increased the crop yield in three slope positions.In the SI treatments,the bottom slope was the highest yield position,followed by the top,and then the back slopes,suggesting that the bottom slope position of regularly incorporated straw might have increased the potential for boosting maize yield.Overall,the study demonstrated the outsized potential of straw incorporation to enhance maize NA and then increase the grain yield in black soil slope farmland.