期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
Bending results of graphene origami reinforced doubly curved shell
1
作者 Nan Yang Yunhe Zou Mohammad Arefi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期198-210,共13页
The present work investigates higher order stress,strain and deformation analyses of a shear deformable doubly curved shell manufactures by a Copper(Cu)core reinforced with graphene origami auxetic metamaterial subjec... The present work investigates higher order stress,strain and deformation analyses of a shear deformable doubly curved shell manufactures by a Copper(Cu)core reinforced with graphene origami auxetic metamaterial subjected to mechanical and thermal loads.The effective material properties of the graphene origami auxetic reinforced Cu matrix are developed using micromechanical models cooperate both material properties of graphene and Cu in terms of temperature,volume fraction and folding degree.The principle of virtual work is used to derive governing equations with accounting thermal loading.The numerical results are analytically obtained using Navier's technique to investigate impact of significant parameters such as thermal loading,graphene amount,folding degree and directional coordinate on the stress,strain and deformation responses of the structure.The graphene origami materials may be used in aerospace vehicles and structures and defence technology because of their low weight and high stiffness.A verification study is presented for approving the formulation,solution methodology and numerical results. 展开更多
关键词 Graphene origami Copper matrix Doubly curved Shear deformable Auxetic metamaterial
下载PDF
Transient responses of double-curved sandwich two-layer shells resting on Kerr's foundations with laminated three-phase polymer/GNP/fiber surface and auxetic honeycomb core subjected to the blast load
2
作者 Nguyen Thi Hai Van Thi Hong Nguyen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期222-247,共26页
This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fib... This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fiber surface subjected to the blast load.Each of the two layers that make up the double-curved shell structure is made up of an auxetic honeycomb core and two laminated sheets of three-phase polymer/GNP/fiber.The exterior is supported by a Kerr elastic foundation with three characteristics.The key innovation of the proposed theory is that the transverse shear stresses are zero at two free surfaces of each layer.In contrast to previous first-order shear deformation theories,no shear correction factor is required.Navier's exact solution was used to treat the double-curved shell problem with a single title boundary,while the finite element technique and an eight-node quadrilateral were used to address the other boundary requirements.To ensure the accuracy of these results,a thorough comparison technique is employed in conjunction with credible statements.The problem model's edge cases allow for this kind of analysis.The study's findings may be used in the post-construction evaluation of military and civil works structures for their ability to sustain explosive loads.In addition,this is also an important basis for the calculation and design of shell structures made of smart materials when subjected to shock waves or explosive loads. 展开更多
关键词 Blast load Two-layer shell Polymer/GNP/Fiber surface Auxetic honeycomb Shear connectors
下载PDF
In-plane and out-of-plane quasi-static compression performance enhancement of 3D printed re-entrant diamond auxetic metamaterial with geometrical tuning and fiber reinforcement
3
作者 Niranjan Chikkanna Shankar Krishnapillai Velmurugan Ramachandran 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第7期1-17,共17页
Auxetic materials are cellular materials with a unique property of negative Poisson’s ratio.The auxeticity and performance of these metamaterials utterly depend on the geometrical parameters and loading direction.For... Auxetic materials are cellular materials with a unique property of negative Poisson’s ratio.The auxeticity and performance of these metamaterials utterly depend on the geometrical parameters and loading direction.For the first time,the quasi-static uniaxial compression performance of fused filament fabricated re-entrant diamond auxetic metamaterial is evaluated in the x-direction(in-plane)and z-direction(out-of-plane).The most commonly used thermoplastic feedstock,Acrylonitrile butadiene styrene,is considered a material of choice.The effect of influential geometrical parameters of the re-entrant diamond structure and printing parameter is systematically studied using Taguchi’s design of experiments.Grey-based multi-objective optimisation technique has been adopted to arrive at the optimal structure.Efforts are made to improve the stiffness and strength of the structure with fibre reinforcements.Micro glass fibre reinforcements have enhanced specific strength and stiffness in both in-plane and out-ofplane directions.A sevenfold and thirteen times increase in specific strength and energy absorption is evident for glass fibre-reinforced structures in out-of-plane directions compared to in-plane ones.Proper tuning of geometrical parameters of the re-entrant diamond structure can result in a Poisson’s ratio of up to-3.49 when tested in the x-direction.The parametric study has illustrated the tailorability of the structure according to the application requirements.The statistical study has signified each considered parameter’s contribution to the compression performance characteristics of the 3D printed re-entrant diamond auxetic metamaterial. 展开更多
关键词 auxeticity Fibre reinforcement Tailorability Anisotropy Geometrical influence Property enhancement
下载PDF
Auxetic mechanical metamaterials: from soft to stiff
4
作者 Xiang Li Weitao Peng +2 位作者 Wenwang Wu Jian Xiong Yang Lu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期60-85,共26页
Auxetic mechanical metamaterials are artificially architected materials that possess negative Poisson’s ratio,demonstrating transversal contracting deformation under external vertical compression loading.Their physic... Auxetic mechanical metamaterials are artificially architected materials that possess negative Poisson’s ratio,demonstrating transversal contracting deformation under external vertical compression loading.Their physical properties are mainly determined by spatial topological configurations.Traditionally,classical auxetic mechanical metamaterials exhibit relatively lower mechanical stiffness,compared to classic stretching dominated architectures.Nevertheless,in recent years,several novel auxetic mechanical metamaterials with high stiffness have been designed and proposed for energy absorption,load-bearing,and thermal-mechanical coupling applications.In this paper,mechanical design methods for designing auxetic structures with soft and stiff mechanical behavior are summarized and classified.For soft auxetic mechanical metamaterials,classic methods,such as using soft basic material,hierarchical design,tensile braided design,and curved ribs,are proposed.In comparison,for stiff auxetic mechanical metamaterials,design schemes,such as hard base material,hierarchical design,composite design,and adding additional load-bearing ribs,are proposed.Multi-functional applications of soft and stiff auxetic mechanical metamaterials are then reviewed.We hope this study could provide some guidelines for designing programmed auxetics with specified mechanical stiffness and deformation abilities according to demand. 展开更多
关键词 AUXETIC mechanical metamaterial SOFT STIFF structural design
下载PDF
Dynamic crushing behavior and energy absorption of hybrid auxetic metamaterial inspired by Islamic motif art
5
作者 Ruilan TIAN Huaitong GUAN +4 位作者 Xuhao LU Xiaolong ZHANG Huanan HAO Wenjie FENG Guanglei ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第3期345-362,共18页
Auxetic honeycomb structures are promising metamaterials with outstanding mechanical properties,and can be potentially used in energy absorption applications.In this study,a novel modified re-entrant hybrid auxetic me... Auxetic honeycomb structures are promising metamaterials with outstanding mechanical properties,and can be potentially used in energy absorption applications.In this study,a novel modified re-entrant hybrid auxetic metamaterial inspired by Islamic motif art is designed by integrating four-pointed double re-entrant motifs with symmetric semi-hexagonal unit cells to achieve a high energy absorption capacity(EAC).Theoretical analyses and numerical simulations are performed to examine the dynamic crushing behavior of the four-pointed double re-entrant combined structure(FDRCS).The developed finite element models(FEMs)are validated by the experiments under quasi-static compression.The deformation mode and stress-strain curves are further studied under low,medium,and high crushing velocities.The theoretically predicted plateau stress of the FDRCS under different crushing velocities is consistent with the numerical simulation results.The crushing stress and the EAC of the FDRCS are influenced by the geometric parameters and crushing velocities.The FDRCS exhibits a negative Poisson's ratio(NPR),owing to the four-point re-entrant structure(RES).Moreover,the specific energy absorption(SEA)of these structures is higher than that of nonauxetic hexagonal and auxetic re-entrant structures,owing to the generation of more plastic hinges that dissipate more energy during dynamic crushing. 展开更多
关键词 re-entrant honeycomb auxetic hybrid metamaterial ENERGY-ABSORPTION dynamic crushing
下载PDF
Vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers under blast load
6
作者 Quoc-Hoa Pham Van Ke Tran Trung Thanh Tran 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期148-163,共16页
In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order... In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order shear deformation theory(HSDT)to achieve the governing equations.The sandwich plates with the ultra-light feature of the auxetic honeycomb core layer(negative Poisson’s ratio)and reinforced by two laminated three-phase skin layers.The obtained results in our work are compared with other previously published to confirm accuracy and reliability.In addition,the effects of parameters such as geometrical and material parameters on the vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers are fully investigated. 展开更多
关键词 Laminated three-phase Sandwich plate Auxetic honeycomb ES-MITC3 element High-order shear deformation theory
下载PDF
Auxetics in Biomedical Applications: A Review
7
作者 Sean Rose Dexter Siu +1 位作者 JD Zhu Reem Roufail 《Journal of Minerals and Materials Characterization and Engineering》 CAS 2023年第2期27-35,共9页
Materials exhibiting auxetic properties have a negative Poisson’s ratio, which intrigued researchers to understand the behavior of auxetic structure. Several researchers focused on the different auxetic cell designs,... Materials exhibiting auxetic properties have a negative Poisson’s ratio, which intrigued researchers to understand the behavior of auxetic structure. Several researchers focused on the different auxetic cell designs, while others focused on the auxetic applications. With the advance of additive manufacturing methods, computer-aided design and finite element analysis in recent decades, auxetics have been explored. One of the interesting applications is in the field of biomedical devices or implants, especially for certain natural biomedical organs such as tissues, certain ligaments that have auxetic properties. This paper is an overview of auxetic design approaches and biomedical applications. 展开更多
关键词 AUXETICS Negative Poisson’s Ratio BIOMATERIALS Biomedical Engineering
下载PDF
Geometric Study of Two-Dimension Stellated Reentrant Auxetic Structures to Transformable Architecture
8
作者 MªDoloresÁlvarez Elipe 《Journal of Architectural Environment & Structural Engineering Research》 2023年第1期17-24,共8页
Transformable architecture is totally linked to the study and knowledge of geometry.There are some materials in nature,whose geometric invariants establish equivalent structural behavior regarding the scalar transform... Transformable architecture is totally linked to the study and knowledge of geometry.There are some materials in nature,whose geometric invariants establish equivalent structural behavior regarding the scalar transformations,developing different spatial typologies according to dimensional variation.Auxetic materials are characterized by their negative Poisson’s ratio.They can change their geometric configuration from a line to a surface,and from a surface to a volume or spatial framework.This paper is based on establishing and comparing those stellated reentrant auxetic geometries to be able to build new spaces defined by their capacity for architectural transformation,studying analytically geometric properties of stellated reentrant auxetic structures that,from the molecular to the macroscopic level,can be part of the architecture construction.In this investigation,a comparative study by means of CAD of stellated reentrant auxetic patterns has been realized.A Computer-Aided Design study of stellated reentrant auxetic structures will be realized to use them in architecture.The geometric behavior of the different stellated reentrant auxetic patterns is analyzed from the developed study to generate a systematic comparison,evaluating properties of these forms,such as their maximum achievable area reductions in relation to the total length of bars of the structure,in order to obtain a growth factor. 展开更多
关键词 Transformable ARCHITECTURE GEOMETRY AUXETIC Stellated REENTRANT CAD Growth factor
下载PDF
MOLECULAR DESIGN OF NEW KINDS OF AUXETIC POLYMERS AND NETWORKS
9
作者 魏高原 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2004年第4期355-362,共8页
Three new kinds of molecular networks are designed and predicted to exhibit negative Poisson ratios. Molecular mechanics calculations on these networks show that the magnitude of Poisson ratios depends on the relative... Three new kinds of molecular networks are designed and predicted to exhibit negative Poisson ratios. Molecular mechanics calculations on these networks show that the magnitude of Poisson ratios depends on the relative flexibility of beam and arm structures. Several new kinds of auxetic polymers, whose successful synthesis should be easier than that of the corresponding auxetic networks, are then proposed. It is found that the kabob-like polymers with auxegens lying vertically on the main chain can acquire auxeticity while those with auxegens lying horizontally on the main chain cannot. Besides, a half kabob-like or pseudo-ladder polymer with auxegens linked at the intersection of the beam and the arm does show auxeticity when adopting constrictive conformers. It is, however, worthwhile noting that the origins of auxeticity still await and strongly deserve further experimental and theoretical investigations. 展开更多
关键词 AUXETIC auxeticity Negative Poisson ratio Auxetic polymer Molecular modeling
下载PDF
Hygroelasticity analysis of an elastically restrained functionally graded porous metamaterial circular plate resting on an auxetic material circular plate
10
作者 A.BEHRAVAN-RAD M.JAFARI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第9期1359-1380,共22页
The main objective of this research is to investigate the hygroelastic behavior of a non-homogeneous circular plate made up of porous metamaterial resting on an auxetic material plate.The mechanical properties of the ... The main objective of this research is to investigate the hygroelastic behavior of a non-homogeneous circular plate made up of porous metamaterial resting on an auxetic material plate.The mechanical properties of the main plate,as well as moisture concentration,vary as an exponential function in the transverse direction.Poisson’s ratio is constant.The elastic supporting medium is developed by considering the structurestructure coupling.Based on the linear hygroelasticity theory,the governing state equations in terms of displacements and moisture concentration are acquired.At first,the Fickian equation is solved to compute the nonlinear distribution of moisture through the plate thickness,and then the state equations are semi-analytically solved using the statespace(SS)method and the differential quadrature(DQ)rule to predict the elastic field quantities.A comprehensive parametric analysis is accomplished to elucidate the effects of key parameters on the steady-state response of the plate under the mechanical and hygral loads. 展开更多
关键词 METAMATERIAL hygroelasticity auxeticity hygral interaction
下载PDF
Data-Driven Structural Design Optimization for Petal-Shaped Auxetics Using Isogeometric Analysis 被引量:4
11
作者 Yingjun Wang Zhongyuan Liao +2 位作者 Shengyu Shi Zhenpei Wang Leong Hien Poh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第2期433-458,共26页
Focusing on the structural optimization of auxetic materials using data-driven methods,a back-propagation neural network(BPNN)based design framework is developed for petal-shaped auxetics using isogeometric analysis.A... Focusing on the structural optimization of auxetic materials using data-driven methods,a back-propagation neural network(BPNN)based design framework is developed for petal-shaped auxetics using isogeometric analysis.Adopting a NURBSbased parametric modelling scheme with a small number of design variables,the highly nonlinear relation between the input geometry variables and the effective material properties is obtained using BPNN-based fitting method,and demonstrated in this work to give high accuracy and efficiency.Such BPNN-based fitting functions also enable an easy analytical sensitivity analysis,in contrast to the generally complex procedures of typical shape and size sensitivity approaches. 展开更多
关键词 DATA-DRIVEN BP neural network petal-shaped auxetics negative Poisson’s ratio structural design isogeometric analysis.
下载PDF
Optimal design of a novel cylindrical sandwich panel with double arrow auxetic core under air blast loading 被引量:3
12
作者 Xu-ke Lan Qi Huang +1 位作者 Tong Zhou Shun-shan Feng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期617-626,共10页
The increasing threat of explosions on the battle field and the terrorist action requires the development of more effective blast resistance materials and structures.Curved structure can support the external loads eff... The increasing threat of explosions on the battle field and the terrorist action requires the development of more effective blast resistance materials and structures.Curved structure can support the external loads effectively by virtue of their spatial curvature.In review of the excellent energy absorption property of auxetic structure,employing auxetic structure as core material in curved sandwich shows the potential to improve the protection performance.In this study,a novel cylindrical sandwich panel with double arrow auxetic(DAA) core was designed and the numerical model was built by ABAQUS.Due to the complexity of the structure,systematic parameter study and optimal design are conducted.Two cases of optimal design were considered,case1 focuses on reducing the deflection and mass of the structure,while case2 focuses on reducing the deflection and increasing the energy absorption per unit mass.Parameter study and optimal design were conducted based on Latin Hypercube Sampling(LHD)method,artificial neural networks(ANN) metamodel and the nondominated sorting genetic algorithm(NSGA-Ⅱ).The Pareto front was obtained and the cylindrical DAA structure performed much better than its equal solid panel in both blast resistance and energy absorption capacity.Optimization results can be used as a reference for different applications. 展开更多
关键词 Auxetic structure Blast response Finite element analysis(FEA) Optimal design
下载PDF
Elastic properties of chiral,anti-chiral,and hierarchical honeycombs:A simple energy-based approach 被引量:11
13
作者 Davood Mousanezhad Babak Haghpanah +3 位作者 Ranajay Ghosh Abdel Magid Hamouda Harold Nayeb-Hashemi Ashkan Vaziri 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2016年第2期81-96,共16页
The effects of two geometric refinement strategies widespread in natural structures, chirality and self-similar hierarchy, on the in-plane elastic response of two-dimensional honeycombs were studied systematically. Si... The effects of two geometric refinement strategies widespread in natural structures, chirality and self-similar hierarchy, on the in-plane elastic response of two-dimensional honeycombs were studied systematically. Simple closed-form expressions were derived for the elastic moduli of several chiral, anti- chiral, and hierarchical honeycombs with hexagon and square based networks. Finite element analysis was employed to validate the analytical estimates of the elastic moduli. The results were also compared with the numerical and experimental data available in the literature. We found that introducing a hier- archical refinement increases the Young's modulus of hexagon based honeycombs while decreases their shear modulus. For square based honeycombs, hierarchy increases the shear modulus while decreasing their Young's modulus. Introducing chirality was shown to always decrease the Young's modulus and Poisson's ratio of the structure. However, chirality remains the only route to auxeticity. In particular, we found that anti-tetra-chiral structures were capable of simultaneously exhibiting anisotropy, auxeticity, and remarkably low shear modulus as the magnitude of the chirality of the unit cell increases. 展开更多
关键词 Chiral Hierarchical Honeycomb Metamaterial Auxetic
下载PDF
Analysis of the geometrical dependence of auxetic behavior in reentrant structures by finite elements 被引量:5
14
作者 V.H.Carneiro H.Puga J.Meireles 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第2期295-300,共6页
Materials with a negative Poisson's ratio(PR)are called auxetics;they are characterized by expansion/contraction when tensioned/compressed.Given this counterintuitive behavior,they present very particular character... Materials with a negative Poisson's ratio(PR)are called auxetics;they are characterized by expansion/contraction when tensioned/compressed.Given this counterintuitive behavior,they present very particular characteristics and mechanical behavior.Geometrical models have been developed to justify and artificiall reproduce such materials' auxetic behavior.The focus of this study is the exploration of a reentrant model by analyzing the variation in the PR of reentrant structures as a function of geometrical and base material parameters.It is shown that,even in the presence of protruding ribs,there may not be auxetic behavior,and this depends on the geometry of each reentrant structure.Values determined for these parameters can be helpful as approximate reference data in the design and fabrication of auxetic lattices using reentrant geometries. 展开更多
关键词 Auxetic Poisson’s ratio Reentrant Finite element analysis Elasticity
下载PDF
A new interpretation for formation of orthogonal joints in quartz sandstone 被引量:1
15
作者 Le Li Shaocheng Ji 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第2期289-299,共11页
Two vertical and orthogonal systematic joint sets are generally arrayed in a grid pattern on the bedding surface,which are the significant features of flat-lying sandstone terrains.Although extensive researches are re... Two vertical and orthogonal systematic joint sets are generally arrayed in a grid pattern on the bedding surface,which are the significant features of flat-lying sandstone terrains.Although extensive researches are reported on this topic,many fundamental problems have still not been solved.Such mutually perpendicular opening-mode fractures are an obvious manifestation of effective tensile stresses in two orthogonal directions in the horizontal bedding plane.A good understanding of these orthogonal joint systems is a key to structural analysis,landscape interpretation,and guidance of resolving a number of very practical problems in engineering,mining and hydrologic projects.Based on an anatomic investigation on the orthogonal joints in the Potsdam sandstone of Cambrian age at Ausable Chasm(New York State,USA)and Beauharnois(Quebec,Canada),we proposed that the orthogonal joints may result from the auxetic effects of quartz-rich sandstone rather than local or regional rotation of the maximum tensile stress(σ_(3))direction by about 90°.The sandstone beds with negative Poisson's ratios are so fascinating that,when placed under vertical burial compression and layer-parallel extension in one direction(σ_(3)),it becomes stretched in the transverse direction(σ_(2)),producing two orthogonal sets of mutual abutting and intersecting joints(J1 and J2 normal toσ_(3) andσ_(2),respectively),and both are normal to the bedding surface.Joint set J1 is more closely-spaced than J2 by a factor of∼3.3,which is correlated with an average Poisson's ratio of−0.3 for the Potsdam sandstone at the time of joint formation. 展开更多
关键词 Rock fractures Orthogonal joints SANDSTONE Auxetic effects Potsdam group
下载PDF
Modified virtual internal bond model based on deformable Voronoi particles 被引量:1
16
作者 Oleg Konovalov Shunying Ji Michael Zhuravkov 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2020年第2期87-91,共5页
In last time,the series of virtual internal bond model was proposed for solving rock mechanics problems.In these models,the rock continuum is considered as a structure of discrete particles connected by normal and she... In last time,the series of virtual internal bond model was proposed for solving rock mechanics problems.In these models,the rock continuum is considered as a structure of discrete particles connected by normal and shear springs(bonds).It is well announced that the normal springs structure corresponds to a linear elastic solid with a fixed Poisson ratio,namely,0.25 for threedimensional cases.So the shear springs used to represent the diversity of the Poisson ratio.However,the shearing force calculation is not rotationally invariant and it produce difficulties in application of these models for rock mechanics problems with sufficient displacements.In this letter,we proposed the approach to support the diversity of the Poisson ratio that based on usage of deformable Voronoi cells as set of particles.The edges of dual Delaunay tetrahedralization are considered as structure of normal springs(bonds).The movements of particle’s centers lead to deformation of tetrahedrals and as result to deformation of Voronoi cells.For each bond,there are the corresponded dual face of some Voronoi cell.We can consider the normal bond as some beam and in this case,the appropriate face of Voronoi cell will be a cross section of this beam.If during deformation the Voronoi face was expand,then,according Poisson effect,the length of bond should be decrees.The above mechanism was numerically investigated and we shown that it is acceptable for simulation of elastic behavior in 0.1–0.3 interval of Poisson ratio.Unexpected surprise is that proposed approach give possibility to simulate auxetic materials with negative Poisson’s ratio in interval from–0.5 to–0.1. 展开更多
关键词 Discrete element method Real multi-dimensional INTERNAL bond VORONOI TESSELLATION MICROMECHANICAL poisson ratio Barycentric COORDINATES AUXETIC effects
下载PDF
Architectural Design and Additive Manufacturing of Mechanical Metamaterials:A Review 被引量:1
17
作者 Chenxi Lu Mengting Hsieh +5 位作者 Zhifeng Huang Chi Zhang Yaojun Lin Qiang Shen Fei Chen Lianmeng Zhang 《Engineering》 SCIE EI CAS 2022年第10期44-63,共20页
Mechanical metamaterials can be defined as a class of architected materials that exhibit unprecedented mechanical properties derived from designed artificial architectures rather than their constituent materials.While... Mechanical metamaterials can be defined as a class of architected materials that exhibit unprecedented mechanical properties derived from designed artificial architectures rather than their constituent materials.While macroscale and simple layouts can be realized by conventional top-down manufacturing approaches,many of the sophisticated designs at various length scales remain elusive,due to the lack of adequate manufacturing methods.Recent progress in additive manufacturing(AM)has led to the realization of a myriad of novel metamaterial concepts.AM methods capable of fabricating microscale architectures with high resolution,arbitrary complexity,and high feature fidelity have enabled the rapid development of architected meta materials and drastically reduced the design-computation and experimental-validation cycle.This paper first provides a detailed review of various topologies based on the desired mechanical properties,including stiff,strong,and auxetic(negative Poisson’s ratio)metamaterials,followed by a discussion of the AM technologies capable of fabricating these metamaterials.Finally,we discuss current challenges and recommend future directions for AM and mechanical metamaterials. 展开更多
关键词 Mechanical metamaterials Auxetic materials Architectural design Additive manufacturing
下载PDF
In-Plane Impact Dynamics Analysis of Re-Entrant Honeycomb with Variable Cross-Section 被引量:1
18
作者 Yuanxun Ou Shilin Yan Pin Wen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第4期209-222,共14页
Due to the unique deformation characteristics of auxetic materials(Poisson’s ratioμ<0),they have better shock resistance and energy absorption properties than traditional materials.Inspired by the concept of vari... Due to the unique deformation characteristics of auxetic materials(Poisson’s ratioμ<0),they have better shock resistance and energy absorption properties than traditional materials.Inspired by the concept of variable crosssection design,a new auxetic re-entrant honeycomb structure is designed in this study.The detailed design method of re-entrant honeycomb with variable cross-section(VCRH)is provided,and five VCRH structures with the same relative density and different cross-section change rates are proposed.The in-plane impact resistance and energy absorption abilities of VCRH under constant velocity are investigated by ABAQUS/EXPLICIT.The results show that the introduction of variable cross-section design can effectively improve the impact resistance and energy absorption abilities of auxetic re-entrant honeycombs.The VCRH structure has better Young’s modulus,plateau stress,and specific energy absorption(SEA)than traditional re-entrant honeycomb(RH).The influence of microstructure parameters(such as cross-section change rateα)on the dynamic impact performance of VCRH is also studied.Results show that,with the increase in impact velocity andα,the plateau stress and SEA of VCRH increase.A positive correlation is also found between the energy absorption efficiency,impact load uniformity andαunder both medium and high impact speeds.These results can provide a reference for designing improved auxetic re-entrant honeycomb structures. 展开更多
关键词 Auxetic re-entrant honeycombs variable cross-section design in-plane impact finite element simulation
下载PDF
Auxetic Woven Fabrics—Pores' Parameters Observation
19
作者 VYSANSKA Monika VINTROVA Petra 《Journal of Donghua University(English Edition)》 EI CAS 2013年第5期416-420,共5页
Manufacturing of a macro-scale helix auxetic yarn(HAY)was described. Consequently areal woven fabric and three kinds of woven fabrics various in weaves were introduced respectively. Their expected auxetic effect( assu... Manufacturing of a macro-scale helix auxetic yarn(HAY)was described. Consequently areal woven fabric and three kinds of woven fabrics various in weaves were introduced respectively. Their expected auxetic effect( assured by double helix yarn) was tested through the Poisson's ratio value(for auxetic structure is negative).Other observed parameters talked about variation in woven fabric porosity and the pores' parameters during the sample straining.Setting of this non-standard test( connection between dynamometer and image analysis) was also introduced. The differences among observed parameters were evaluated and conclusions for three types of woven fabrics were determined. It was found that less auxetic behavior caused less porosity. Less auxetic structure( satin) with longer floating threads embodies bigger pores' size and less circularity. The plain pattern has the greatest porosity but the smallest pores; the satin pattern behaves by contraries. 展开更多
关键词 AUXETIC behavior HELICAL AUXETIC yarn(HAY) pores woven FABRIC
下载PDF
Damping Analysis and Failure Mechanism of 3D Printed Bio-Based Sandwich with Auxetic Core under Bending Fatigue Loading
20
作者 Khawla Essassi Jean-Luc Rebiere +3 位作者 Abderrahim El Mahi Mohamed Amine Ben Souf Anas Bouguecha Mohamed Haddar 《Journal of Renewable Materials》 SCIE EI 2021年第3期569-584,共16页
Meta-sandwich composites with three-dimensional(3D)printed architecture structure are characterized by their high ability to absorb energy.In this paper,static and fatigue 3-point bending tests are implemented on a 3D... Meta-sandwich composites with three-dimensional(3D)printed architecture structure are characterized by their high ability to absorb energy.In this paper,static and fatigue 3-point bending tests are implemented on a 3D printed sandwich composites with a re-entrant honeycomb core.The skins,core and whole sandwich are manufactured using the same bio-based material which is polylactic acid with flax fiber reinforcement.Experimental tests are performed in order to evaluate the durability and the ability of this material to dissipate energy.First,static tests are conducted to study the bending behaviour of the sandwich beams,as well as to determine the failure parameters and the characteristic used in fatigue tests.Then,fatigue analyses were carried out to determine the fatigue resistance of these structures.The effects of the core density on the stiffness,hysteresis loop,energy absorption and loss factor,for two loading level,are determined.Moreover,the behaviour of this sandwich composite with re-entrant honeycomb core is compared with that of sandwiches with different core topologies.The results show that sandwich with high core density dissipate more energy,which results higher loss factors.The determined properties offer the most sensitive indicators of sandwich composite damage during its lifetime.This work aims to determine the static and fatigue properties of this material,thus,study its potential applications in industry. 展开更多
关键词 Auxetic structure FATIGUE DAMPING bio-sandwich composite 3D printing
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部