This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent ...This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.展开更多
A new system of generalized mixed equilibrium problems (SGMEPs) involving generalized mixed variational-like inequality problems is introduced and studied in reflexive Banach spaces. A system of auxiliary generalize...A new system of generalized mixed equilibrium problems (SGMEPs) involving generalized mixed variational-like inequality problems is introduced and studied in reflexive Banach spaces. A system of auxiliary generalized mixed equilibrium problems (SAGMEPs) for solving the SGMEPs is first introduced. Existence and uniqueness of the solutions to the SAGMEPs is proved under quite mild assumptions without any coercive conditions in reflexive Banach spaces. Using the auxiliary principle technique, a new iterative algorithm for solving the SGMEPs is proposed and analyzed. Strong convergence of the iterative sequences generated by the algorithm is also proved under quite mild assumptions without any coercive conditions. These results improve, unify, and generalize some recent results in this field.展开更多
Special input signals identification method based on the auxiliary model based multi-innovation stochastic gradient algorithm for Hammerstein output-error system was proposed.The special input signals were used to rea...Special input signals identification method based on the auxiliary model based multi-innovation stochastic gradient algorithm for Hammerstein output-error system was proposed.The special input signals were used to realize the identification and separation of the Hammerstein model.As a result,the identification of the dynamic linear part can be separated from the static nonlinear elements without any redundant adjustable parameters.The auxiliary model based multi-innovation stochastic gradient algorithm was applied to identifying the serial link parameters of the Hammerstein model.The auxiliary model based multi-innovation stochastic gradient algorithm can avoid the influence of noise and improve the identification accuracy by changing the innovation length.The simulation results show the efficiency of the proposed method.展开更多
The simulation of multi-domain,multi-physics mathematical models with uncertain parameters can be quite demanding in terms of algorithm design and com-putation costs.Our main objective in this paper is to examine a ph...The simulation of multi-domain,multi-physics mathematical models with uncertain parameters can be quite demanding in terms of algorithm design and com-putation costs.Our main objective in this paper is to examine a physical interface coupling between two random dissipative systems with uncertain parameters.Due to the complexity and uncertainty inherent in such interface-coupled problems,un-certain diffusion coefficients or friction parameters often arise,leading to consid-ering random systems.We employ Monte Carlo methods to produce independent and identically distributed deterministic heat-heat model samples to address ran-dom systems,and adroitly integrate the ensemble idea to facilitate the fast calcu-lation of these samples.To achieve unconditional stability,we introduce the scalar auxiliary variable(SAV)method to overcome the time constraints of the ensemble implicit-explicit algorithm.Furthermore,for a more accurate and stable scheme,the ensemble data-passing algorithm is raised,which is unconditionally stable and convergent without any auxiliary variables.These algorithms employ the same co-efficient matrix for multiple linear systems and enable easy parallelization,which can significantly reduce the computational cost.Finally,numerical experiments are conducted to support the theoretical results and showcase the unique features of the proposed algorithms.展开更多
基金supported by the National Natural Science Foundation of China(12126318,12126302).
文摘This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.
基金supported by the Scientific Research Fund of Sichuan Normal University (No.09ZDL04)the Sichuan Province Leading Academic Discipline Project (No.SZD0406)
文摘A new system of generalized mixed equilibrium problems (SGMEPs) involving generalized mixed variational-like inequality problems is introduced and studied in reflexive Banach spaces. A system of auxiliary generalized mixed equilibrium problems (SAGMEPs) for solving the SGMEPs is first introduced. Existence and uniqueness of the solutions to the SAGMEPs is proved under quite mild assumptions without any coercive conditions in reflexive Banach spaces. Using the auxiliary principle technique, a new iterative algorithm for solving the SGMEPs is proposed and analyzed. Strong convergence of the iterative sequences generated by the algorithm is also proved under quite mild assumptions without any coercive conditions. These results improve, unify, and generalize some recent results in this field.
基金National Natural Science Foundation of China(No.61374044)Shanghai Science Technology Commission,China(Nos.15510722100,16111106300)
文摘Special input signals identification method based on the auxiliary model based multi-innovation stochastic gradient algorithm for Hammerstein output-error system was proposed.The special input signals were used to realize the identification and separation of the Hammerstein model.As a result,the identification of the dynamic linear part can be separated from the static nonlinear elements without any redundant adjustable parameters.The auxiliary model based multi-innovation stochastic gradient algorithm was applied to identifying the serial link parameters of the Hammerstein model.The auxiliary model based multi-innovation stochastic gradient algorithm can avoid the influence of noise and improve the identification accuracy by changing the innovation length.The simulation results show the efficiency of the proposed method.
文摘The simulation of multi-domain,multi-physics mathematical models with uncertain parameters can be quite demanding in terms of algorithm design and com-putation costs.Our main objective in this paper is to examine a physical interface coupling between two random dissipative systems with uncertain parameters.Due to the complexity and uncertainty inherent in such interface-coupled problems,un-certain diffusion coefficients or friction parameters often arise,leading to consid-ering random systems.We employ Monte Carlo methods to produce independent and identically distributed deterministic heat-heat model samples to address ran-dom systems,and adroitly integrate the ensemble idea to facilitate the fast calcu-lation of these samples.To achieve unconditional stability,we introduce the scalar auxiliary variable(SAV)method to overcome the time constraints of the ensemble implicit-explicit algorithm.Furthermore,for a more accurate and stable scheme,the ensemble data-passing algorithm is raised,which is unconditionally stable and convergent without any auxiliary variables.These algorithms employ the same co-efficient matrix for multiple linear systems and enable easy parallelization,which can significantly reduce the computational cost.Finally,numerical experiments are conducted to support the theoretical results and showcase the unique features of the proposed algorithms.