In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the B...In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the Boussinesq equation by means of the suggested method. The performance of the method is reliable and useful, and gives more general exact solutions than the existing methods. The new (G'/G)-expansion method provides not only more general forms of solutions but also cuspon, peakon, soliton, and periodic waves.展开更多
By introducing an auxiliary ordinary differential equation and solving it by the method of variable separation abundant types of explicit and exact solutions for the double sinh-Gordon equation are derived in a simple...By introducing an auxiliary ordinary differential equation and solving it by the method of variable separation abundant types of explicit and exact solutions for the double sinh-Gordon equation are derived in a simple manner.展开更多
By means of the auxiliary ordinary differential equation method,we have obtained many solitary wave solutions,periodic wave solutions and variable separation solutions for the (2+1)-dimensional KP equation.Using a mix...By means of the auxiliary ordinary differential equation method,we have obtained many solitary wave solutions,periodic wave solutions and variable separation solutions for the (2+1)-dimensional KP equation.Using a mixed method,many exact solutions have been obtained.展开更多
In this paper, based on new auxiliary nonlinear ordinary differential equation with a sixtb-aegree nonnneal term, we study the (2+l )-dimensional Davey-Stewartson equation and new types of travelling wave solutions...In this paper, based on new auxiliary nonlinear ordinary differential equation with a sixtb-aegree nonnneal term, we study the (2+l )-dimensional Davey-Stewartson equation and new types of travelling wave solutions are obtained, which include new bell and kink profile solitary wave solutions, triangular periodic wave solutions, and singular solutions. The method used here can be also extended to many other nonlinear partial differential equations.展开更多
The presented study deals with the investigation of nonlinear Bogoyavlenskii equations with conformable time-derivative which has great importance in plasma physics and non-inspectoral scattering problems.Travelling w...The presented study deals with the investigation of nonlinear Bogoyavlenskii equations with conformable time-derivative which has great importance in plasma physics and non-inspectoral scattering problems.Travelling wave solutions of this nonlinear conformable model are constructed by utilizing two powerful analytical approaches,namely,the modified auxiliary equation method and the Sardar sub-equation method.Many novel soliton solutions are extracted using these methods.Furthermore,3D surface graphs,contour plots and parametric graphs are drawn to show dynamical behavior of some obtained solutions with the aid of symbolic software such as Mathematica.The constructed solutions will help to understand the dynamical framework of nonlinear Bogoyavlenskii equations in the related physical phenomena.展开更多
This paper reflects the execution of a reliable technique which we proposed as a new method called the double auxiliary equations method for constructing new traveling wave solutions of nonlinear fractional differenti...This paper reflects the execution of a reliable technique which we proposed as a new method called the double auxiliary equations method for constructing new traveling wave solutions of nonlinear fractional differential equation.The proposed scheme has been successfully applied on two very important evolution equations,the space-time fractional differential equation governing wave propagation in low-pass electrical transmission lines equation and the time fractional Burger’s equation.The obtained results show that the proposed method is more powerful,promising and convenient for solving nonlinear fractional differential equations(NFPDEs).To our knowledge,the solutions obtained by the proposed method have not been reported in former literature.展开更多
文摘In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the Boussinesq equation by means of the suggested method. The performance of the method is reliable and useful, and gives more general exact solutions than the existing methods. The new (G'/G)-expansion method provides not only more general forms of solutions but also cuspon, peakon, soliton, and periodic waves.
基金supported by the National Natural Science Foundation of China (Grant No 10672053) the Natural Science Foundation of Hunan Province of China (Grant No 05JJ30007)the Scientific Research Fund of Hunan Institute of Science and Technology of China (Grant No 2007Y047)
文摘By introducing an auxiliary ordinary differential equation and solving it by the method of variable separation abundant types of explicit and exact solutions for the double sinh-Gordon equation are derived in a simple manner.
基金supported by the National Natural Science Foundation of China(10672053)
文摘By means of the auxiliary ordinary differential equation method,we have obtained many solitary wave solutions,periodic wave solutions and variable separation solutions for the (2+1)-dimensional KP equation.Using a mixed method,many exact solutions have been obtained.
基金The project supported by National Natural Science Foundation of China and the Natural Science Foundation of Shandong Province of China
文摘In this paper, based on new auxiliary nonlinear ordinary differential equation with a sixtb-aegree nonnneal term, we study the (2+l )-dimensional Davey-Stewartson equation and new types of travelling wave solutions are obtained, which include new bell and kink profile solitary wave solutions, triangular periodic wave solutions, and singular solutions. The method used here can be also extended to many other nonlinear partial differential equations.
文摘The presented study deals with the investigation of nonlinear Bogoyavlenskii equations with conformable time-derivative which has great importance in plasma physics and non-inspectoral scattering problems.Travelling wave solutions of this nonlinear conformable model are constructed by utilizing two powerful analytical approaches,namely,the modified auxiliary equation method and the Sardar sub-equation method.Many novel soliton solutions are extracted using these methods.Furthermore,3D surface graphs,contour plots and parametric graphs are drawn to show dynamical behavior of some obtained solutions with the aid of symbolic software such as Mathematica.The constructed solutions will help to understand the dynamical framework of nonlinear Bogoyavlenskii equations in the related physical phenomena.
文摘This paper reflects the execution of a reliable technique which we proposed as a new method called the double auxiliary equations method for constructing new traveling wave solutions of nonlinear fractional differential equation.The proposed scheme has been successfully applied on two very important evolution equations,the space-time fractional differential equation governing wave propagation in low-pass electrical transmission lines equation and the time fractional Burger’s equation.The obtained results show that the proposed method is more powerful,promising and convenient for solving nonlinear fractional differential equations(NFPDEs).To our knowledge,the solutions obtained by the proposed method have not been reported in former literature.