With the increasing wind power penetration in the power system,the auxiliary frequency control(AFC)of wind farm(WF)has been widely used.The traditional system frequency response(SFR)model is not suitable for the wind ...With the increasing wind power penetration in the power system,the auxiliary frequency control(AFC)of wind farm(WF)has been widely used.The traditional system frequency response(SFR)model is not suitable for the wind power generation system due to its poor accuracy and applicability.In this paper,a piecewise reduced-order frequency response(PROFR)model is proposed,and an optimized auxiliary frequency control(O-AFC)scheme of WF based on the P-ROFR model is proposed.Firstly,a full-order frequency response model considering the change in operating point of wind turbine is established to improve the applicability.In order to simplify the fullorder model,a P-ROFR model with second-order structure and high accuracy at each frequency response stage is proposed.Based on the proposed P-ROFR model,the relationship between the frequency response indexes and the auxiliary frequency controller coefficients is expressed explicitly.Then,an OAFC scheme with the derived explicit expression as the optimization objective is proposed in order to improve the frequency support capability on the premise of ensuring the full release of the rotor kinetic energy and the full use of the effect of time delay on frequency regulation.Finally,the effectiveness of the proposed P-ROFR model and the performance of the proposed OAFC scheme are verified by simulation studies.展开更多
Auxiliary frequency control of a wind turbine generator(WTG) has been widely used to enhance the frequencysecurity of power systems with high penetration of renewableenergy. Previous studies recommend two types of con...Auxiliary frequency control of a wind turbine generator(WTG) has been widely used to enhance the frequencysecurity of power systems with high penetration of renewableenergy. Previous studies recommend two types of control schemes,including frequency droop control and emulated inertia control,which simulate the response characteristics of the synchronousgenerator (SG). This paper plans to further explore the optimalauxiliary frequency control of the wind turbine based on previousresearch. First, it is determined that the virtual inertia control haslittle effect on the maximum rate of change of frequency (MaxROCOF)if the time delay of the control link of WTG is taken intoconsideration. Secondly, if a WTG operates in maximum powerpoint tracking (MPPT) mode and uses the rotor deceleration forfrequency modulation, its optimal auxiliary frequency control willcontain only droop control. Furthermore, if the droop control isproperly delayed, better system frequency response (SFR) willbe obtained. The reason is that coordination between the WTGand SG is important for SFR when the frequency modulationcapability of the WTG is limited. The frequency modulationcapability of the WTG is required to be released more properly.Therefore, when designing optimal auxiliary frequency controlfor the WTG, a better control scheme is worth further study.展开更多
Adding the auxiliary frequency control function to the wind turbine generator(WTG)is a solution to the frequency security problem of the power system caused by the replacement of the synchronous generator(SG)by the WT...Adding the auxiliary frequency control function to the wind turbine generator(WTG)is a solution to the frequency security problem of the power system caused by the replacement of the synchronous generator(SG)by the WTG.The auxiliary frequency control using rotor kinetic energy is an economical scheme because the WTG still runs at the maximum power point during normal operation.In this paper,the functional optimization model of the auxiliary frequency control strategy of WTG is established.The optimal auxiliary frequency control strategy is obtained by solving the model numerically.As for the practical realization of the control strategy,the coordination of the auxiliary frequency control with the maximum power point tracking(MPPT)control is studied.The practical auxiliary frequency control strategy is modified to adapt to different power disturbances in the system,and the parameter setting method is also proposed.The sensitivity of system frequency to control parameters is studied.Finally,the simulation results verify the effectiveness and practicability of the proposed control strategy.展开更多
基金supported by the State Grid Corporation Science and Technology Project“Overall process optimization control technology of frequency support for large-scale offshore wind power farm in receiving-end grid”(No.5211DS23000F)。
文摘With the increasing wind power penetration in the power system,the auxiliary frequency control(AFC)of wind farm(WF)has been widely used.The traditional system frequency response(SFR)model is not suitable for the wind power generation system due to its poor accuracy and applicability.In this paper,a piecewise reduced-order frequency response(PROFR)model is proposed,and an optimized auxiliary frequency control(O-AFC)scheme of WF based on the P-ROFR model is proposed.Firstly,a full-order frequency response model considering the change in operating point of wind turbine is established to improve the applicability.In order to simplify the fullorder model,a P-ROFR model with second-order structure and high accuracy at each frequency response stage is proposed.Based on the proposed P-ROFR model,the relationship between the frequency response indexes and the auxiliary frequency controller coefficients is expressed explicitly.Then,an OAFC scheme with the derived explicit expression as the optimization objective is proposed in order to improve the frequency support capability on the premise of ensuring the full release of the rotor kinetic energy and the full use of the effect of time delay on frequency regulation.Finally,the effectiveness of the proposed P-ROFR model and the performance of the proposed OAFC scheme are verified by simulation studies.
基金the National Natural Science Foundation of China(51922061)the Science and Technology Project of State Grid Corporation of China(SGZJ0000KXJS1900418).
文摘Auxiliary frequency control of a wind turbine generator(WTG) has been widely used to enhance the frequencysecurity of power systems with high penetration of renewableenergy. Previous studies recommend two types of control schemes,including frequency droop control and emulated inertia control,which simulate the response characteristics of the synchronousgenerator (SG). This paper plans to further explore the optimalauxiliary frequency control of the wind turbine based on previousresearch. First, it is determined that the virtual inertia control haslittle effect on the maximum rate of change of frequency (MaxROCOF)if the time delay of the control link of WTG is taken intoconsideration. Secondly, if a WTG operates in maximum powerpoint tracking (MPPT) mode and uses the rotor deceleration forfrequency modulation, its optimal auxiliary frequency control willcontain only droop control. Furthermore, if the droop control isproperly delayed, better system frequency response (SFR) willbe obtained. The reason is that coordination between the WTGand SG is important for SFR when the frequency modulationcapability of the WTG is limited. The frequency modulationcapability of the WTG is required to be released more properly.Therefore, when designing optimal auxiliary frequency controlfor the WTG, a better control scheme is worth further study.
基金supported by State Grid Corporation of China(No.52094020006V)。
文摘Adding the auxiliary frequency control function to the wind turbine generator(WTG)is a solution to the frequency security problem of the power system caused by the replacement of the synchronous generator(SG)by the WTG.The auxiliary frequency control using rotor kinetic energy is an economical scheme because the WTG still runs at the maximum power point during normal operation.In this paper,the functional optimization model of the auxiliary frequency control strategy of WTG is established.The optimal auxiliary frequency control strategy is obtained by solving the model numerically.As for the practical realization of the control strategy,the coordination of the auxiliary frequency control with the maximum power point tracking(MPPT)control is studied.The practical auxiliary frequency control strategy is modified to adapt to different power disturbances in the system,and the parameter setting method is also proposed.The sensitivity of system frequency to control parameters is studied.Finally,the simulation results verify the effectiveness and practicability of the proposed control strategy.