The mean value theorem for derivatives says that for a given function over a closed and bounded interval, there is a point <em>P</em> on the graph such that the tangent at <em>P</em> is paralle...The mean value theorem for derivatives says that for a given function over a closed and bounded interval, there is a point <em>P</em> on the graph such that the tangent at <em>P</em> is parallel to the secant through the two endpoints. The mean value theorem for definite integrals says that the area under the function is equal to the area of a rectangle whose base is the length of the interval and height of some point <em>Q</em> on the graph. These two theorems have been studied and utilized extensively and they form the backbone of many important theorems in different branches of mathematics. In this note, we pose the question: for what functions do the two points <em>P </em>and <em>Q</em> always coincide? We find that the only analytic functions satisfying this condition are linear or exponential functions.展开更多
In this paper,we study a Dirichlet-type boundary value problem(BVP) of nonlinear fractional differential equation with an order α∈(3,4],where the fractional derivative D~α_(o^+)is the standard Riemann-Liouville fra...In this paper,we study a Dirichlet-type boundary value problem(BVP) of nonlinear fractional differential equation with an order α∈(3,4],where the fractional derivative D~α_(o^+)is the standard Riemann-Liouville fractional derivative.By constructing the Green function and investigating its properties,we obtain some criteria for the existence of one positive solution and two positive solutions for the above BVP.The Krasnosel'skii fixedpoint theorem in cones is used here.We also give an example to illustrate the applicability of our results.展开更多
In this paper,the boundary value problems of p-Laplacian functional differential equation are studied.By using a fixed point theorem in cones,some criteria for the existence of positive solutions are given.
In this paper, we consider the positive solutions of fractional three-point boundary value problem of the form Dο^α+u(t)+f(t,u(t),u'(t),…,u^(n-3)(5),u^(n-2)(t))=0,u^(i)(0)=0,0≤i≤n-2,u^(n-...In this paper, we consider the positive solutions of fractional three-point boundary value problem of the form Dο^α+u(t)+f(t,u(t),u'(t),…,u^(n-3)(5),u^(n-2)(t))=0,u^(i)(0)=0,0≤i≤n-2,u^(n-2)(1)-βu^(n-2)(ξ)=0,where 0〈t〈1,n-1〈α≤n,n≥2,ξ Е(0,1),βξ^a-n〈1. We first transform it into another equivalent boundary value problem. Then, we derive the Green's function for the equivalent boundary value problem and show that it satisfies certain properties. At last, by using some fixed-point theorems, we obtain the existence of positive solution for this problem. Example is given to illustrate the effectiveness of our result.展开更多
The behavior of the zeros in finite Taylor series approximations of the Riemann Xi function (to the zeta function), of modified Bessel functions and of the Gaussian (bell) function is investigated and illustrated in t...The behavior of the zeros in finite Taylor series approximations of the Riemann Xi function (to the zeta function), of modified Bessel functions and of the Gaussian (bell) function is investigated and illustrated in the complex domain by pictures. It can be seen how the zeros in finite approximations approach to the genuine zeros in the transition to higher-order approximation and in case of the Gaussian (bell) function that they go with great uniformity to infinity in the complex plane. A limiting transition from the modified Bessel functions to a Gaussian function is discussed and represented in pictures. In an Appendix a new building stone to a full proof of the Riemann hypothesis using the Second mean-value theorem is presented.展开更多
In this paper, we investigate the existence of solution for a class of impulse boundary value problem of nonlinear fractional functional differential equation of mixed type. We obtain the existence results of solution...In this paper, we investigate the existence of solution for a class of impulse boundary value problem of nonlinear fractional functional differential equation of mixed type. We obtain the existence results of solution by applying some well-known fixed point theorems. An example is given to illustrate the effectiveness of our result.展开更多
This paper considers the following boundary value problems for functional differential equations: x' (t) = f(t, xt) (0<t<b) ,x0 = x1, and x'(t) = f(t,xt, x' (t)) (0<t<b) , x0 = , x(b) = B. By u...This paper considers the following boundary value problems for functional differential equations: x' (t) = f(t, xt) (0<t<b) ,x0 = x1, and x'(t) = f(t,xt, x' (t)) (0<t<b) , x0 = , x(b) = B. By using certain fixed point theorem based on degree theory,some sufficient conditions for solvability of the above problems are given.展开更多
Based on the isomorphism between the space of star-shaped sets and the space of continuous positively homogeneous real-valued functions, the star-shaped differential of a directionally differentiable function is defin...Based on the isomorphism between the space of star-shaped sets and the space of continuous positively homogeneous real-valued functions, the star-shaped differential of a directionally differentiable function is defined. Formulas for star-shaped differential of a pointwise maximum and a pointwise minimum of a finite number of directionally differentiable functions, and a composite of two directionaUy differentiable functions are derived. Furthermore, the mean-value theorem for a directionaUy differentiable function is demonstrated.展开更多
In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Su...In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Sub-differential. We extend the results on the characterizations of non-smooth convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the monotonicity of its sub-differentials to the lower semi-continuous pseudo-convex functions on real Banach spaces.展开更多
In this paper we present a mean value theorem derived from Flett's mean value theorem. It turns out that cubic polynomials have the midpoint of the interval as their mean value point.To answer what class of functi...In this paper we present a mean value theorem derived from Flett's mean value theorem. It turns out that cubic polynomials have the midpoint of the interval as their mean value point.To answer what class of functions have this property,we consider a functional equation associated with this mean value theorem.This equation is then solved in a general setting on abelian groups.展开更多
The problem of state feedback controllers for a class of Takagi-Sugeno (T-S) Lipschitz nonlinear systems is investigated. A simple systematic and useful synthesis method is proposed based on the use of the different...The problem of state feedback controllers for a class of Takagi-Sugeno (T-S) Lipschitz nonlinear systems is investigated. A simple systematic and useful synthesis method is proposed based on the use of the differential mean value theorem (DMVT) and convex theory. The proposed design approach is based on the mean value theorem (MVT) to express the nonlinear error dynamics as a convex combination of known matrices with time varying coefficients as linear parameter varying (LPV) systems. Using the Lyapunov theory, stability conditions are obtained and expressed in terms of linear matrix inequalities (LMIs). The controller gains are then obtained by solving linear matrix inequalities. The effectiveness of the proposed approach for closed loop-field oriented control (CL-FOC) of permanent magnet synchronous machine (PMSM) drives is demonstrated through an illustrative simulation for the proof of these approaches. Furthermore, an extension for controller design with parameter uncertainties and perturbation performance is discussed.展开更多
A formula for the mean-value distribution of certain meromorphic functions on a vertical line s = σ +iR under a generalized Boolean transformation, called rational Boolean transformation from R into itself, is derive...A formula for the mean-value distribution of certain meromorphic functions on a vertical line s = σ +iR under a generalized Boolean transformation, called rational Boolean transformation from R into itself, is derived using Birkhoff 's ergodic theorem. This formula is represented as a computable integral. Using the Cauchy's integral theorem, values of this integral corresponding to various possible cases are explicitly computed.展开更多
The weighted Sobolev-Lions type spaces W pl,γ(Ω; E0, E) = W pl,γ(Ω; E) ∩ Lp,γ (Ω; E0) are studied, where E0, E are two Banach spaces and E0 is continuously and densely embedded on E. A new concept of capa...The weighted Sobolev-Lions type spaces W pl,γ(Ω; E0, E) = W pl,γ(Ω; E) ∩ Lp,γ (Ω; E0) are studied, where E0, E are two Banach spaces and E0 is continuously and densely embedded on E. A new concept of capacity of region Ω ∈ Rn in W pl,γ(; E0, E) is introduced. Several conditions in terms of capacity of region Ω and interpolations of E0 and E are found such that ensure the continuity and compactness of embedding operators. In particular, the most regular class of interpolation spaces Eα between E0 and E, depending of α and l, are found such that mixed differential operators Dα are bounded and compact from W pl,γ(Ω; E0, E) to Eα-valued Lp,γ spaces. In applications, the maximal regularity for differential-operator equations with parameters are studied.展开更多
In this paper, observer design for an induction motor has been investigated. The peculiarity of this paper is the synthesis of a mono-Luenberger observer for highly coupled system. To transform the nonlinear error dyn...In this paper, observer design for an induction motor has been investigated. The peculiarity of this paper is the synthesis of a mono-Luenberger observer for highly coupled system. To transform the nonlinear error dynamics for the induction motor into the linear parametric varying (LPV) system, the differential mean value theorem combined with the sector nonlinearity transformation has been used. Stability conditions based on the Lyapunov function lead to solvability of a set of linear matrix inequalities. The proposed observer guarantees the global exponential convergence to zero of the estimation error. Finally, the simulation results are given to show the performance of the observer design.展开更多
文摘The mean value theorem for derivatives says that for a given function over a closed and bounded interval, there is a point <em>P</em> on the graph such that the tangent at <em>P</em> is parallel to the secant through the two endpoints. The mean value theorem for definite integrals says that the area under the function is equal to the area of a rectangle whose base is the length of the interval and height of some point <em>Q</em> on the graph. These two theorems have been studied and utilized extensively and they form the backbone of many important theorems in different branches of mathematics. In this note, we pose the question: for what functions do the two points <em>P </em>and <em>Q</em> always coincide? We find that the only analytic functions satisfying this condition are linear or exponential functions.
基金Supported by the Research Fund for the Doctoral Program of High Education of China(20094407110001)Supported by the NSF of Guangdong Province(10151063101000003)
文摘In this paper,we study a Dirichlet-type boundary value problem(BVP) of nonlinear fractional differential equation with an order α∈(3,4],where the fractional derivative D~α_(o^+)is the standard Riemann-Liouville fractional derivative.By constructing the Green function and investigating its properties,we obtain some criteria for the existence of one positive solution and two positive solutions for the above BVP.The Krasnosel'skii fixedpoint theorem in cones is used here.We also give an example to illustrate the applicability of our results.
文摘In this paper,the boundary value problems of p-Laplacian functional differential equation are studied.By using a fixed point theorem in cones,some criteria for the existence of positive solutions are given.
基金Supported by the National Nature Science Foundation of China(11071001)Supported by the Key Program of Ministry of Education of China(205068)
文摘In this paper, we consider the positive solutions of fractional three-point boundary value problem of the form Dο^α+u(t)+f(t,u(t),u'(t),…,u^(n-3)(5),u^(n-2)(t))=0,u^(i)(0)=0,0≤i≤n-2,u^(n-2)(1)-βu^(n-2)(ξ)=0,where 0〈t〈1,n-1〈α≤n,n≥2,ξ Е(0,1),βξ^a-n〈1. We first transform it into another equivalent boundary value problem. Then, we derive the Green's function for the equivalent boundary value problem and show that it satisfies certain properties. At last, by using some fixed-point theorems, we obtain the existence of positive solution for this problem. Example is given to illustrate the effectiveness of our result.
文摘The behavior of the zeros in finite Taylor series approximations of the Riemann Xi function (to the zeta function), of modified Bessel functions and of the Gaussian (bell) function is investigated and illustrated in the complex domain by pictures. It can be seen how the zeros in finite approximations approach to the genuine zeros in the transition to higher-order approximation and in case of the Gaussian (bell) function that they go with great uniformity to infinity in the complex plane. A limiting transition from the modified Bessel functions to a Gaussian function is discussed and represented in pictures. In an Appendix a new building stone to a full proof of the Riemann hypothesis using the Second mean-value theorem is presented.
基金Supported by the NNSF of China(ll071001) Supported by the NSF" of the Anhui Higher Education Institutions of China(KJ2013B276) Supporied by the Key Program of the Natural Science Foundation for the Excellent Youth Scholars of Anhui Higher Education Institutions of China (2013SQRL142ZD)
文摘In this paper, we investigate the existence of solution for a class of impulse boundary value problem of nonlinear fractional functional differential equation of mixed type. We obtain the existence results of solution by applying some well-known fixed point theorems. An example is given to illustrate the effectiveness of our result.
文摘This paper considers the following boundary value problems for functional differential equations: x' (t) = f(t, xt) (0<t<b) ,x0 = x1, and x'(t) = f(t,xt, x' (t)) (0<t<b) , x0 = , x(b) = B. By using certain fixed point theorem based on degree theory,some sufficient conditions for solvability of the above problems are given.
文摘Based on the isomorphism between the space of star-shaped sets and the space of continuous positively homogeneous real-valued functions, the star-shaped differential of a directionally differentiable function is defined. Formulas for star-shaped differential of a pointwise maximum and a pointwise minimum of a finite number of directionally differentiable functions, and a composite of two directionaUy differentiable functions are derived. Furthermore, the mean-value theorem for a directionaUy differentiable function is demonstrated.
文摘In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Sub-differential. We extend the results on the characterizations of non-smooth convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the monotonicity of its sub-differentials to the lower semi-continuous pseudo-convex functions on real Banach spaces.
文摘In this paper we present a mean value theorem derived from Flett's mean value theorem. It turns out that cubic polynomials have the midpoint of the interval as their mean value point.To answer what class of functions have this property,we consider a functional equation associated with this mean value theorem.This equation is then solved in a general setting on abelian groups.
文摘The problem of state feedback controllers for a class of Takagi-Sugeno (T-S) Lipschitz nonlinear systems is investigated. A simple systematic and useful synthesis method is proposed based on the use of the differential mean value theorem (DMVT) and convex theory. The proposed design approach is based on the mean value theorem (MVT) to express the nonlinear error dynamics as a convex combination of known matrices with time varying coefficients as linear parameter varying (LPV) systems. Using the Lyapunov theory, stability conditions are obtained and expressed in terms of linear matrix inequalities (LMIs). The controller gains are then obtained by solving linear matrix inequalities. The effectiveness of the proposed approach for closed loop-field oriented control (CL-FOC) of permanent magnet synchronous machine (PMSM) drives is demonstrated through an illustrative simulation for the proof of these approaches. Furthermore, an extension for controller design with parameter uncertainties and perturbation performance is discussed.
基金supported by Thailand research fund(Grant No.MRG6080210)
文摘A formula for the mean-value distribution of certain meromorphic functions on a vertical line s = σ +iR under a generalized Boolean transformation, called rational Boolean transformation from R into itself, is derived using Birkhoff 's ergodic theorem. This formula is represented as a computable integral. Using the Cauchy's integral theorem, values of this integral corresponding to various possible cases are explicitly computed.
文摘The weighted Sobolev-Lions type spaces W pl,γ(Ω; E0, E) = W pl,γ(Ω; E) ∩ Lp,γ (Ω; E0) are studied, where E0, E are two Banach spaces and E0 is continuously and densely embedded on E. A new concept of capacity of region Ω ∈ Rn in W pl,γ(; E0, E) is introduced. Several conditions in terms of capacity of region Ω and interpolations of E0 and E are found such that ensure the continuity and compactness of embedding operators. In particular, the most regular class of interpolation spaces Eα between E0 and E, depending of α and l, are found such that mixed differential operators Dα are bounded and compact from W pl,γ(Ω; E0, E) to Eα-valued Lp,γ spaces. In applications, the maximal regularity for differential-operator equations with parameters are studied.
文摘In this paper, observer design for an induction motor has been investigated. The peculiarity of this paper is the synthesis of a mono-Luenberger observer for highly coupled system. To transform the nonlinear error dynamics for the induction motor into the linear parametric varying (LPV) system, the differential mean value theorem combined with the sector nonlinearity transformation has been used. Stability conditions based on the Lyapunov function lead to solvability of a set of linear matrix inequalities. The proposed observer guarantees the global exponential convergence to zero of the estimation error. Finally, the simulation results are given to show the performance of the observer design.