期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
PIFs interact with SWI2/SNF2-related 1 complex subunit 6 to regulate H2A.Z deposition and photomorphogenesis in Arabidopsis
1
作者 Huiru Chen Wanting Wang +9 位作者 Xiao Chen Yake Niu Yuanyuan Qi Ze Yu Minyu Xiong Pengbo Xu Wenxiu Wang Tongtong Guo Hong-Quan Yang Zhilei Mao 《Journal of Genetics and Genomics》 SCIE CSCD 2023年第12期983-992,共10页
Light is an essential environmental signal perceived by a broad range of photoreceptors in plants. Among them, the red/far-red light receptor phytochromes function to promote photomorphogenesis, which is critical to t... Light is an essential environmental signal perceived by a broad range of photoreceptors in plants. Among them, the red/far-red light receptor phytochromes function to promote photomorphogenesis, which is critical to the survival of seedlings after seeds germination. The basic-helix-loop-helix transcription factors phytochrome-interacting factors (PIFs) are the pivotal direct downstream components of phytochromes. H2A.Z is a highly conserved histone variant regulating gene transcription, and its incorporation into nucleosomes is catalyzed by SWI2/SNF2-related 1 complex, in which SWI2/SNF2-related 1 complex subunit 6 (SWC6) and actin-related protein 6 (ARP6) serve as core subunits. Here, we show that PIFs physically interact with SWC6 in vitro and in vivo, leading to the disassociation of HY5 from SWC6. SWC6 and ARP6 regulate hypocotyl elongation partly through PIFs in red light. PIFs and SWC6 coregulate the expression of auxin-responsive genes such as IAA6, IAA19, IAA20, and IAA29 and repress H2A.Z deposition at IAA6 and IAA19 in red light. Based on previous studies and our findings, we propose that PIFs inhibit photomorphogenesis, at least in part, through repression of H2A.Z deposition at auxin-responsive genes mediated by the interactions of PIFs with SWC6 and promotion of their expression in red light. 展开更多
关键词 Phytochrome-interacting factors PHOTOMORPHOGENESIS H2A.Z SWC6 auxin-responsive genes ARABIDOPSIS
原文传递
An auxin‐responsive endogenous peptide regulates root development in Arabidopsis 被引量:2
2
作者 Fengxi Yang Yu Song +3 位作者 Hao Yang Zhibin Liu Genfa Zhu Yi Yang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2014年第7期635-647,共13页
Auxin plays critical roles in root formation and development. The components involved in this process, however, are not well understood. Here, we newly identified a peptide encoding gene, auxin-responsive endogenous p... Auxin plays critical roles in root formation and development. The components involved in this process, however, are not well understood. Here, we newly identified a peptide encoding gene, auxin-responsive endogenous polypeptide 1 (AREP1), which is induced by auxin, and mediates root development in Arabidopsis. Expression of AREP1 was specific to the cotyledon and to root and shoot meristem tissues. Amounts of AREP1 transcripts and AREP1-green fluorescent protein fusion proteins were elevated in response to indoleacetic acid treatment. Suppression of AREP1 through RNAi silencing resulted in reduction of primary root length, increase of lateral root number, and expansion of adventitious roots, compared to the observations in wild-type plants in the presence of auxin. By contrast, transgenic plants overexpressing AREP1 showed enhanced growth of the primary root under auxin treatment. Additionally, rootmorphology, including lateral root number and adventitious roots, differed greatly between transgenic and wildtype plants. Further analysis indicated that the expression of auxin-responsive genes, such as IAA3, IAA7, IAA17, GH3.2, GH3.3, and SAUR-AC1, was significantly higher in AREP1 RNAi plants, and was slightly lower in AREP1 overexpressing plants than in wildtype plants. These results suggest that the novel endogenous peptide AREP1 plays an important role in the process of auxinmediated root development. 展开更多
关键词 Auxin response endogenous peptide root developmentCitation: Yang F Song Y Yang H Liu Z Zhu G Yang Y (2014) An auxin-responsive endogenous peptide regulates root development in
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部