期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Divergent apparent temperature sensitivity of terrestrial ecosystem respiration 被引量:2
1
作者 Bing Song Shuli Niu +17 位作者 Ruisen Luo Yiqi Luo Jiquan Chen Guirui Yu Janusz Olejnik Georg Wohlfahrt Gerard Kiely Asko Noormets Leonardo Montagnani Alessandro Cescatti Vincenzo Magliulo Beverly Elizabeth Law Magnus Lund Andrej Varlagin Antonio Raschi Matthias Peichl Mats BNilsson Lutz Merbold 《Journal of Plant Ecology》 SCIE 2014年第5期419-428,共10页
Aims Recent studies revealed convergent temperature sensitivity of ecosys-tem respiration(Re)within aquatic ecosystems and between terrestrial and aquatic ecosystems.We do not know yet whether various terres-trial eco... Aims Recent studies revealed convergent temperature sensitivity of ecosys-tem respiration(Re)within aquatic ecosystems and between terrestrial and aquatic ecosystems.We do not know yet whether various terres-trial ecosystems have consistent or divergent temperature sensitivity.Here,we synthesized 163 eddy covariance flux sites across the world and examined the global variation of the apparent activation energy(Ea),which characterizes the apparent temperature sensitivity of and its interannual variability(IAV)as well as their controlling factors.Methods We used carbon fluxes and meteorological data across FLUXNET sites to calculate mean annual temperature,tempera-ture range,precipitation,global radiation,potential radiation,gross primary productivity and Re by averaging the daily values over the years in each site.Furthermore,we analyzed the sites with>8 years data to examine the IAV of Ea and calculated the standard deviation of Ea across years at each site to character-ize IAV.Important Findings The results showed a widely global variation of Ea,with significantly lower values in the tropical and subtropical areas than in temperate and boreal areas,and significantly higher values in grasslands and wetlands than that in deciduous broadleaf forests and evergreen for-ests.Globally,spatial variations of Ea were explained by changes in temperature and an index of water availability with differing contribution of each explaining variable among climate zones and biomes.IAV and the corresponding coefficient of variation of Ea decreased with increasing latitude,but increased with radiation and corresponding mean annual temperature.The revealed patterns in the spatial and temporal variations of Ea and its controlling factors indicate divergent temperature sensitivity of Re,which could help to improve our predictive understanding of Re in response to climate change. 展开更多
关键词 activation energy ecosystem respiration index of water availability interannual variability gross primary productivity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部