Testability design is an effective way to realize the fault detection and isolation.Its important step is to determine testability figures of merits(TFOM).Firstly,some influence factors for TFOMs are analyzed,such as ...Testability design is an effective way to realize the fault detection and isolation.Its important step is to determine testability figures of merits(TFOM).Firstly,some influence factors for TFOMs are analyzed,such as the processes of system operation,maintenance and support,fault detection and isolation and so on.Secondly,a testability requirement analysis model is built based on generalized stochastic Petri net(GSPN).Then,the system's reachable states are analyzed based on the model,a Markov chain isomorphic with Petri net is constructed,a state transition matrix is created and the system's steady state probability is obtained.The relationship between the steady state availability and testability parameters can be revealed and reasoned.Finally,an example shows that the proposed method can determine TFOM,such as fault detection rate and fault isolation rate,effectively and reasonably.展开更多
We consider a multi server and multichannel real-time system with identical servers (e.g. unmanned aerial vehicles, machine controllers, etc.) that provide services for requests of real-time jobs arriving via several ...We consider a multi server and multichannel real-time system with identical servers (e.g. unmanned aerial vehicles, machine controllers, etc.) that provide services for requests of real-time jobs arriving via several different channels (e.g. surveillance regions, assembly lines, etc.) working under maximum load regime. Each channel has its own constant numbers of jobs inside at any instant. Each channel has its own specifications, and therefore different kinds of equipment and inventory are needed to serve different channels. There is a limited number of identical maintenance teams (less than the total number of servers in the system). We compute analytically steady- state probabilities of this system, its availability, loss penalty function and other performance characteristics, when both service and maintenance times are exponentially distributed.展开更多
以投资费用最小和系统可用输电能力(available transfer capability,ATC)最大为目标,建立了多类型柔性交流输电系统(flexible AC transmission system,FACTS)的多目标优化模型,并考虑了多个约束条件。提出一种嵌套的多目标粒子群优化算...以投资费用最小和系统可用输电能力(available transfer capability,ATC)最大为目标,建立了多类型柔性交流输电系统(flexible AC transmission system,FACTS)的多目标优化模型,并考虑了多个约束条件。提出一种嵌套的多目标粒子群优化算法求解该多约束非线性N-P困难问题的Pareto解集,该算法的外层用于计算多目标优化问题,内层用于计算系统的可用输电能力和静态电压稳定指标。结果表明不考虑其他因素时,晶闸管控制串联电容器(thyristor controlled series capacitor,TCSC)是最合理的配置选择;当FACTS安装数量有限时,相比统一潮流控制器(unified power flow controller,UPFC)和静止同步补偿器(static synchronous compensator,STATCOM),多种FACTS设备混合安装可以在经济上和效果上取得较好的平衡;若电网在有限投资水平下需要较高的可用输电裕量,应首先考虑并联型和串联型FACTS混合安装的方案。在IEEE-14节点中对所提方法进行的验证表明该方法的正确性和有效性,该方法可以同时确定FACTS的安装类型、安装地点和补偿容量。展开更多
文摘Testability design is an effective way to realize the fault detection and isolation.Its important step is to determine testability figures of merits(TFOM).Firstly,some influence factors for TFOMs are analyzed,such as the processes of system operation,maintenance and support,fault detection and isolation and so on.Secondly,a testability requirement analysis model is built based on generalized stochastic Petri net(GSPN).Then,the system's reachable states are analyzed based on the model,a Markov chain isomorphic with Petri net is constructed,a state transition matrix is created and the system's steady state probability is obtained.The relationship between the steady state availability and testability parameters can be revealed and reasoned.Finally,an example shows that the proposed method can determine TFOM,such as fault detection rate and fault isolation rate,effectively and reasonably.
文摘We consider a multi server and multichannel real-time system with identical servers (e.g. unmanned aerial vehicles, machine controllers, etc.) that provide services for requests of real-time jobs arriving via several different channels (e.g. surveillance regions, assembly lines, etc.) working under maximum load regime. Each channel has its own constant numbers of jobs inside at any instant. Each channel has its own specifications, and therefore different kinds of equipment and inventory are needed to serve different channels. There is a limited number of identical maintenance teams (less than the total number of servers in the system). We compute analytically steady- state probabilities of this system, its availability, loss penalty function and other performance characteristics, when both service and maintenance times are exponentially distributed.
文摘以投资费用最小和系统可用输电能力(available transfer capability,ATC)最大为目标,建立了多类型柔性交流输电系统(flexible AC transmission system,FACTS)的多目标优化模型,并考虑了多个约束条件。提出一种嵌套的多目标粒子群优化算法求解该多约束非线性N-P困难问题的Pareto解集,该算法的外层用于计算多目标优化问题,内层用于计算系统的可用输电能力和静态电压稳定指标。结果表明不考虑其他因素时,晶闸管控制串联电容器(thyristor controlled series capacitor,TCSC)是最合理的配置选择;当FACTS安装数量有限时,相比统一潮流控制器(unified power flow controller,UPFC)和静止同步补偿器(static synchronous compensator,STATCOM),多种FACTS设备混合安装可以在经济上和效果上取得较好的平衡;若电网在有限投资水平下需要较高的可用输电裕量,应首先考虑并联型和串联型FACTS混合安装的方案。在IEEE-14节点中对所提方法进行的验证表明该方法的正确性和有效性,该方法可以同时确定FACTS的安装类型、安装地点和补偿容量。