This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting eff...This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting efficiency. Firstly, to obtain the dimensionless governing equation of the system, the original bistable system is approximated as a system without viscoelastic term by using the stochastic averaging method of energy envelope, and then is further decoupled to derive an equivalent system. The credibility of the proposed method is validated by contrasting the consistency between the numerical and the analytical results of the equivalent system under different noise conditions. The influence of system parameters on average output power is analyzed, and the control effect of the time-delayed feedback control on system performance is compared. The output performance of the system is improved with the occurrence of stochastic resonance(SR). Therefore, the signal-to-noise ratio expression for measuring SR is derived, and the dependence of its SR behavior on different parameters is explored.展开更多
On the basis of free-electronic bands, the Fermi energy is calculated by summing the band eigenvalues over Brillouin-zones ,and the results may lead to understand the physical basis of the average-bond-energy model in...On the basis of free-electronic bands, the Fermi energy is calculated by summing the band eigenvalues over Brillouin-zones ,and the results may lead to understand the physical basis of the average-bond-energy model in the calculation of valence-band offsets.展开更多
Inspired by natural photosynthesis,fabricating high-performance S-scheme heterojunction is regarded as a successful tactic to address energy and environmental issues.Herein,NH_(2)-MIL-125(Ti)/Zn_(0.5)Cd_(0.5)S/NiS(NMT...Inspired by natural photosynthesis,fabricating high-performance S-scheme heterojunction is regarded as a successful tactic to address energy and environmental issues.Herein,NH_(2)-MIL-125(Ti)/Zn_(0.5)Cd_(0.5)S/NiS(NMT/ZCS/NiS)S-scheme heterojunction with interfacial coordination bonds is successfully synthesized through in-situ solvothermal strategy.Notably,the optimal NMT/ZCS/NiS S-scheme heterojunction exhibits comparable photocatalytic H_(2)evolution(PHE)rate of about 14876.7μmol h^(−1)g^(−1)with apparent quantum yield of 24.2%at 420 nm,which is significantly higher than that of recently reported MOFs-based photocatalysts.The interfacial coordination bonds(Zn–N,Cd–N,and Ni–N bonds)accelerate the separation and transfer of photogenerated charges,and the NiS as cocatalyst can provide more catalytically active sites,which synergistically improve the photocatalytic performance.Moreover,theoretical calculation results display that the construction of NMT/ZCS/NiS S-scheme heterojunction also optimize the binding energy of active site-adsorbed hydrogen atoms to enable fast adsorption and desorption.Photoassisted Kelvin probe force microscopy,in-situ irradiation X-ray photoelectron spectroscopy,femtosecond transient absorption spectroscopy,and theoretical calculations provide sufficient evidence of the S-scheme charge migration mechanism.This work offers unique viewpoints for simultaneously accelerating the charge dynamics and optimizing the binding strength between the active sites and hydrogen adsorbates over S-scheme heterojunction.展开更多
The population of surface broken bonds of some typical sulfide, oxide and salt-type minerals which may belong to cubic, tetragonal, hexagonal, or orthorhombic system, were calculated. In terms of the calculation resul...The population of surface broken bonds of some typical sulfide, oxide and salt-type minerals which may belong to cubic, tetragonal, hexagonal, or orthorhombic system, were calculated. In terms of the calculation results, the cleavage natures of these minerals were analyzed, and the relationship between surface broken bonds density and surface energy was also established. The results show that the surface broken bonds properties could be used to predict the cleavage nature of most of minerals, and the predicted cleavage planes agree well with those reported in previous literature. Moreover, this work explored a rule that, surface broken bonds density is directly related to surface energy with determination coefficient(R2) of over 0.8, indicating that the former is a dominant factor to determine the latter. Therefore, anisotropic surface broken bonds density can be used to predict the stability of mineral surface and the reactivity of surface atoms.展开更多
Based on a simple classical model specifying that the primary electrons interact with the electrons of a lattice through the Coulomb force and a conclusion that the lattice scattering can be ignored, the formula for t...Based on a simple classical model specifying that the primary electrons interact with the electrons of a lattice through the Coulomb force and a conclusion that the lattice scattering can be ignored, the formula for the average energy required to produce a secondary electron (ε) is obtained. On the basis of the energy band of an insulator and the formula for e, the formula for the average energy required to produce a secondary electron in an insulator (εi) is deduced as a function of the width of the forbidden band (Eg) and electron affinity X. Experimental values and the εi values calculated with the formula are compared, and the results validate the theory that explains the relationships among Eg, X, and ei and suggest that the formula for εi is universal on the condition that the primary electrons at any energy hit the insulator.展开更多
Some highly designable protein structures have dented on the surface of their native structures, and are not full compactly folded. According to hydrophobic-polar (HP) model the most designable structures are full c...Some highly designable protein structures have dented on the surface of their native structures, and are not full compactly folded. According to hydrophobic-polar (HP) model the most designable structures are full compactly folded. To investigate the designability of the dented structures, we introduce the hydrogen bond energy in the secondary structures by using the secondary-structure-favored HP model proposed by Ou-yang etc. The result shows that the average designability increases with the strength of the hydrogen bond. The designabilities of the structures with same dented shape increase exponentially with the number of secondary structure sites. The dented structures can have the highest designabilities for a certain value of hydrogen bond energy density.展开更多
On the basis of crystallographic structure of lithium niobate (LN), the bonding energy was quantitatively calculated by the bond valence sum model, which was employed to investigate the crystal growth. A possible rela...On the basis of crystallographic structure of lithium niobate (LN), the bonding energy was quantitatively calculated by the bond valence sum model, which was employed to investigate the crystal growth. A possible relationship between the crystal growth habit and chemical bonding energy of LN crystals are found. It is found that the higher the bond energy, the slower the growth rate, and the more important the plane. The analytical results indicate that (012) plane is the most influential face for the LN crystal growth, which consists well with the standard card (JCPDS Card: 20-0631) and our previous experimental observation. The current work shows that the chemical bond analysis of LN crystals allows us to predict its growth habit and thus to obtain the expected morphology during the spontaneous growth.展开更多
By virtue of the generalised Hermann-Feynmam theorem we re-derive the energy average formula of photon gas. This is another useful application of the theorem.
In order to use micro ultrasonic bonding technique to package polymer microfluidic chips, an auxiliary microstructure named micro energy director is designed and fabricated. The hot embossing process for PMMA ( polym...In order to use micro ultrasonic bonding technique to package polymer microfluidic chips, an auxiliary microstructure named micro energy director is designed and fabricated. The hot embossing process for PMMA ( polymethyl methacrylate) substrates with both concave micro channel and convex micro energy director for ultrasonic bonding is studied. The embossing processes with different embossing temperatures are simulated using Finite Element Method (FEM). The optimized parameters are: the embossing temperature of 135 ℃ , holding time of 200 s, and the embossing pressure of 1.65 MPa. The experimental results show that the replication error between experiments and simulations is less than 2% and the replication accuracy of the microstrueture is more than 96%. The study offers a method for quick optimizing parameters for hot embossing both concave and convex microstructures.展开更多
Calculation of the bonding energy of a molecular orbital for a series of small molecules has been carried out by using ab initio STO-3G method. The results obtained demonstrate that the concept of the molecular orbita...Calculation of the bonding energy of a molecular orbital for a series of small molecules has been carried out by using ab initio STO-3G method. The results obtained demonstrate that the concept of the molecular orbital bonding energy is applicable for judging whether a molecular orbital is bonding, nonbonding or antibonding besides Mulliken overlap criterion.展开更多
This paper presents the formalism for absorbed dose determination to Aluminum in high-energy electron beams using Rhodotron accelerator. Depth dose curve for Aluminum at electron energy of 10 MeV was calculated. The c...This paper presents the formalism for absorbed dose determination to Aluminum in high-energy electron beams using Rhodotron accelerator. Depth dose curve for Aluminum at electron energy of 10 MeV was calculated. The calculated curve in the model as a function of the depth is compared to the experimental. The agreement of the final results remained well within the expected acceptable range. The calculated values of dose-to-Aluminum are completely fit with the measured values in the range of 0.07% for electron energy of 10 MeV.展开更多
We quantify the mean potential energy of a passive colloidal particle harmonically confined in a bacterial solution using optical traps.We find that the average potential energy of the passive particle depends on the ...We quantify the mean potential energy of a passive colloidal particle harmonically confined in a bacterial solution using optical traps.We find that the average potential energy of the passive particle depends on the trap stiffness,in contrast to the equilibrium case where energy partition is independent of the external constraints.The constraint dependence of the mean potential energy originates from the fact that the persistent collisions between the passive particle and the active bacteria are influenced by the particle relaxation dynamics.Our experimental results are consistent with the Brownian dynamics simulations,and confirm the recent theoretical prediction.展开更多
The process of the epoxy-bonded Sm_2TM_(17) magnets includes:(1)after melting,the ingots are treated by solid soluiion,and then aged and pulverized;(2)the obtained alloy powder is mixed with epoxy resin bind- er;(3)th...The process of the epoxy-bonded Sm_2TM_(17) magnets includes:(1)after melting,the ingots are treated by solid soluiion,and then aged and pulverized;(2)the obtained alloy powder is mixed with epoxy resin bind- er;(3)the mixture is pressed in a magnetic field;(4)the compacts are cured.When the SmCo_(4.9)Fe_(2.7)Cu_(0.54)Zr_(0.13) alloy is heat treated and pressed with optimum pressing parameters,the high quality bonded magnets with B_r=8250 G,_iH_c=13000 Oe,and(BH)_(max)=16MGOe can be obtained.The stability of the magnets is studied also.The irreversible loss of O.C.(open circuit)remanence B_r in the temperature range between 25 and 150℃,is less than 4%.The average temperature coefficient at temperatures between 25 and 70℃ is-0.03%/℃.The magnets obtained have heat resistance up to 130℃ even in long-term service, and have good corrosion resistance in acid,alkali and salt solutions.展开更多
The intramolecular hydrogen-bonding energies for eighteen molecules were calculated based on the substitution method, and compared with those predicted by the cis-trans method. The energy values obtained from two meth...The intramolecular hydrogen-bonding energies for eighteen molecules were calculated based on the substitution method, and compared with those predicted by the cis-trans method. The energy values obtained from two methods are close to each other with a correlation coefficient of 0.96. Furthermore, the hydrogen-bonding energies based on the substitution method are consistent with the geometrical features of intramolecular hydrogen bonds. Both of them demonstrate that the substitution method is capable of providing a good estimation of intramolecular hydrogen-bonding energy.展开更多
Until recently the hydrogen molecule structural parameters are calculated with the methods of quantum mechanics. To achieve results close to experimental values, the wave function used is complicated and has no clear ...Until recently the hydrogen molecule structural parameters are calculated with the methods of quantum mechanics. To achieve results close to experimental values, the wave function used is complicated and has no clear physical meaning. Because the distribution of the electron probability density is a statistical rule, the macro time has actually been used in the concept on a electron cloud graph. Here are obtained three formulas with a classical mechanics method on the bond length r e , bond energy D e and force constant k of the ground state hydrogen molecule, which have a clear physical meaning but no artificial parameters, and compared with experimental values, the relative errors are respectively less than 1%, 2% and 4%.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 11902081)the Science and Technology Projects of Guangzhou (Grant No. 202201010326)the Guangdong Provincial Basic and Applied Basic Research Foundation (Grant No. 2023A1515010833)。
文摘This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting efficiency. Firstly, to obtain the dimensionless governing equation of the system, the original bistable system is approximated as a system without viscoelastic term by using the stochastic averaging method of energy envelope, and then is further decoupled to derive an equivalent system. The credibility of the proposed method is validated by contrasting the consistency between the numerical and the analytical results of the equivalent system under different noise conditions. The influence of system parameters on average output power is analyzed, and the control effect of the time-delayed feedback control on system performance is compared. The output performance of the system is improved with the occurrence of stochastic resonance(SR). Therefore, the signal-to-noise ratio expression for measuring SR is derived, and the dependence of its SR behavior on different parameters is explored.
文摘On the basis of free-electronic bands, the Fermi energy is calculated by summing the band eigenvalues over Brillouin-zones ,and the results may lead to understand the physical basis of the average-bond-energy model in the calculation of valence-band offsets.
文摘Inspired by natural photosynthesis,fabricating high-performance S-scheme heterojunction is regarded as a successful tactic to address energy and environmental issues.Herein,NH_(2)-MIL-125(Ti)/Zn_(0.5)Cd_(0.5)S/NiS(NMT/ZCS/NiS)S-scheme heterojunction with interfacial coordination bonds is successfully synthesized through in-situ solvothermal strategy.Notably,the optimal NMT/ZCS/NiS S-scheme heterojunction exhibits comparable photocatalytic H_(2)evolution(PHE)rate of about 14876.7μmol h^(−1)g^(−1)with apparent quantum yield of 24.2%at 420 nm,which is significantly higher than that of recently reported MOFs-based photocatalysts.The interfacial coordination bonds(Zn–N,Cd–N,and Ni–N bonds)accelerate the separation and transfer of photogenerated charges,and the NiS as cocatalyst can provide more catalytically active sites,which synergistically improve the photocatalytic performance.Moreover,theoretical calculation results display that the construction of NMT/ZCS/NiS S-scheme heterojunction also optimize the binding energy of active site-adsorbed hydrogen atoms to enable fast adsorption and desorption.Photoassisted Kelvin probe force microscopy,in-situ irradiation X-ray photoelectron spectroscopy,femtosecond transient absorption spectroscopy,and theoretical calculations provide sufficient evidence of the S-scheme charge migration mechanism.This work offers unique viewpoints for simultaneously accelerating the charge dynamics and optimizing the binding strength between the active sites and hydrogen adsorbates over S-scheme heterojunction.
基金Project(50831006)supported by the National Natural Science Foundation of ChinaProject(2012BAB10B05)supported by the National Key Technologies R&D Program of China
文摘The population of surface broken bonds of some typical sulfide, oxide and salt-type minerals which may belong to cubic, tetragonal, hexagonal, or orthorhombic system, were calculated. In terms of the calculation results, the cleavage natures of these minerals were analyzed, and the relationship between surface broken bonds density and surface energy was also established. The results show that the surface broken bonds properties could be used to predict the cleavage nature of most of minerals, and the predicted cleavage planes agree well with those reported in previous literature. Moreover, this work explored a rule that, surface broken bonds density is directly related to surface energy with determination coefficient(R2) of over 0.8, indicating that the former is a dominant factor to determine the latter. Therefore, anisotropic surface broken bonds density can be used to predict the stability of mineral surface and the reactivity of surface atoms.
基金Project supported by the Special Funds of the National Natural Science Foundation of China (Grant No. 51245010)the Natural Science Foundation of Jiangsu Province, China (Grant No. 10KJB180004)
文摘Based on a simple classical model specifying that the primary electrons interact with the electrons of a lattice through the Coulomb force and a conclusion that the lattice scattering can be ignored, the formula for the average energy required to produce a secondary electron (ε) is obtained. On the basis of the energy band of an insulator and the formula for e, the formula for the average energy required to produce a secondary electron in an insulator (εi) is deduced as a function of the width of the forbidden band (Eg) and electron affinity X. Experimental values and the εi values calculated with the formula are compared, and the results validate the theory that explains the relationships among Eg, X, and ei and suggest that the formula for εi is universal on the condition that the primary electrons at any energy hit the insulator.
基金Supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China (200525)the Science and Tech-nology Program of Wuhan City (20067003111-07)
文摘Some highly designable protein structures have dented on the surface of their native structures, and are not full compactly folded. According to hydrophobic-polar (HP) model the most designable structures are full compactly folded. To investigate the designability of the dented structures, we introduce the hydrogen bond energy in the secondary structures by using the secondary-structure-favored HP model proposed by Ou-yang etc. The result shows that the average designability increases with the strength of the hydrogen bond. The designabilities of the structures with same dented shape increase exponentially with the number of secondary structure sites. The dented structures can have the highest designabilities for a certain value of hydrogen bond energy density.
基金Project supported by the National Natural Science Foundation of China (20471012), Foundation for the Author of National Excellent Doctoral Dissertation of China (200322), the Research Fund for the Doctoral Program of Higher Education (20040141004) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
文摘On the basis of crystallographic structure of lithium niobate (LN), the bonding energy was quantitatively calculated by the bond valence sum model, which was employed to investigate the crystal growth. A possible relationship between the crystal growth habit and chemical bonding energy of LN crystals are found. It is found that the higher the bond energy, the slower the growth rate, and the more important the plane. The analytical results indicate that (012) plane is the most influential face for the LN crystal growth, which consists well with the standard card (JCPDS Card: 20-0631) and our previous experimental observation. The current work shows that the chemical bond analysis of LN crystals allows us to predict its growth habit and thus to obtain the expected morphology during the spontaneous growth.
基金supported by the Special Funds of the National Natural Science Foundation of China (Grant No.10947017/A05)
文摘By virtue of the generalised Hermann-Feynmam theorem we re-derive the energy average formula of photon gas. This is another useful application of the theorem.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50975037)the State Key Development Program for Basic Research of China(Grant No.2011CB013105).
文摘In order to use micro ultrasonic bonding technique to package polymer microfluidic chips, an auxiliary microstructure named micro energy director is designed and fabricated. The hot embossing process for PMMA ( polymethyl methacrylate) substrates with both concave micro channel and convex micro energy director for ultrasonic bonding is studied. The embossing processes with different embossing temperatures are simulated using Finite Element Method (FEM). The optimized parameters are: the embossing temperature of 135 ℃ , holding time of 200 s, and the embossing pressure of 1.65 MPa. The experimental results show that the replication error between experiments and simulations is less than 2% and the replication accuracy of the microstrueture is more than 96%. The study offers a method for quick optimizing parameters for hot embossing both concave and convex microstructures.
文摘Calculation of the bonding energy of a molecular orbital for a series of small molecules has been carried out by using ab initio STO-3G method. The results obtained demonstrate that the concept of the molecular orbital bonding energy is applicable for judging whether a molecular orbital is bonding, nonbonding or antibonding besides Mulliken overlap criterion.
文摘This paper presents the formalism for absorbed dose determination to Aluminum in high-energy electron beams using Rhodotron accelerator. Depth dose curve for Aluminum at electron energy of 10 MeV was calculated. The calculated curve in the model as a function of the depth is compared to the experimental. The agreement of the final results remained well within the expected acceptable range. The calculated values of dose-to-Aluminum are completely fit with the measured values in the range of 0.07% for electron energy of 10 MeV.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11874397,11674365,11774393,and 11774394).
文摘We quantify the mean potential energy of a passive colloidal particle harmonically confined in a bacterial solution using optical traps.We find that the average potential energy of the passive particle depends on the trap stiffness,in contrast to the equilibrium case where energy partition is independent of the external constraints.The constraint dependence of the mean potential energy originates from the fact that the persistent collisions between the passive particle and the active bacteria are influenced by the particle relaxation dynamics.Our experimental results are consistent with the Brownian dynamics simulations,and confirm the recent theoretical prediction.
文摘The process of the epoxy-bonded Sm_2TM_(17) magnets includes:(1)after melting,the ingots are treated by solid soluiion,and then aged and pulverized;(2)the obtained alloy powder is mixed with epoxy resin bind- er;(3)the mixture is pressed in a magnetic field;(4)the compacts are cured.When the SmCo_(4.9)Fe_(2.7)Cu_(0.54)Zr_(0.13) alloy is heat treated and pressed with optimum pressing parameters,the high quality bonded magnets with B_r=8250 G,_iH_c=13000 Oe,and(BH)_(max)=16MGOe can be obtained.The stability of the magnets is studied also.The irreversible loss of O.C.(open circuit)remanence B_r in the temperature range between 25 and 150℃,is less than 4%.The average temperature coefficient at temperatures between 25 and 70℃ is-0.03%/℃.The magnets obtained have heat resistance up to 130℃ even in long-term service, and have good corrosion resistance in acid,alkali and salt solutions.
基金the National Natural Science Foundation of China (No. 20573049)
文摘The intramolecular hydrogen-bonding energies for eighteen molecules were calculated based on the substitution method, and compared with those predicted by the cis-trans method. The energy values obtained from two methods are close to each other with a correlation coefficient of 0.96. Furthermore, the hydrogen-bonding energies based on the substitution method are consistent with the geometrical features of intramolecular hydrogen bonds. Both of them demonstrate that the substitution method is capable of providing a good estimation of intramolecular hydrogen-bonding energy.
文摘Until recently the hydrogen molecule structural parameters are calculated with the methods of quantum mechanics. To achieve results close to experimental values, the wave function used is complicated and has no clear physical meaning. Because the distribution of the electron probability density is a statistical rule, the macro time has actually been used in the concept on a electron cloud graph. Here are obtained three formulas with a classical mechanics method on the bond length r e , bond energy D e and force constant k of the ground state hydrogen molecule, which have a clear physical meaning but no artificial parameters, and compared with experimental values, the relative errors are respectively less than 1%, 2% and 4%.