The average temperature of frozen soil wall is an essential parameter in the process of design, construction, and safety manage- ment of artificial ground freezing engineering. It is the basis of calculating frozen s...The average temperature of frozen soil wall is an essential parameter in the process of design, construction, and safety manage- ment of artificial ground freezing engineering. It is the basis of calculating frozen soil's mechanical parameters, fiarther prediction of bearing capacity and, ultimately, safety evaluation of the frozen soil wall. Regarding the average temperature of sin- gle-row-piped frozen soil wall, this paper summarizes several current calculation methods and their shortcomings. Furthermore, on the basis of Bakholdin's analytical solution for the temperature field under straight single-row-piped freezing, two new calcula- tion models, namely, the equivalent trapezoid model and the equivalent triangle model, are proposed. These two approaches are used to calculate the average temperature of a certain cross section which indicates the condition of the whole frozen soil wall. Considering the possible parameter range according to the freezing pipe layout that might be applied in actual construction, this paper compares the average temperatures of frozen soil walls obtained by the equivalent trapezoid method and the equivalent tri- angle method with that obtained by numerical integration of Bakholdin's analytical solution. The results show that the discrepancies are extremely small and these two new approaches are better than currently prevailing methods. However, the equivalent triangle method boasts higher accuracy and a simpler formula compared with the equivalent trapezoid method.展开更多
[ Objectivel The research aimed to study prediction model for spatial distribution of the average temperature based on GIS. [ Method l Average temperature over the years as research object, based on Ordinary Kriging ...[ Objectivel The research aimed to study prediction model for spatial distribution of the average temperature based on GIS. [ Method l Average temperature over the years as research object, based on Ordinary Kriging (OK), Inverse Distance Weight ( IDW), SPLINE and Mixed In- terpolation (MLR), monthly temperature data from 1979 to 2008 at 18 long-term meteorological observation stations in Hainan Island were conduc- ted spatial grid treatment. Via contrasts and analyses on different interpolation methods, the optimum interpolation method for average temperature over the years in Hainan Island was selected. [ Resuitl By error analyses of the four interpolation methods for average temperature in recent 30 years in Hainan Island, it was found that accuracy was MLR 〉 IDW 〉 OK 〉 SPLINE. Spatial interpolation effect of MLR was the best for average temperature in Hainan Island. Spatial distribution of the average temperature in Halnan Island had obvious south-high-north-low latitudinal zonality and vertical zonality of gradually declining as altitude rise. In addition, temperature along coast was slightly higher than that in inland. Lapse rate of the temperature in each month in Hainan Island was 0.38 -0.85℃/100 m, and lapse rate of the annual average temperature was about 0.74 ℃/ 100 m. In different areas, lapse rate of the temperature as altitude was different at different time. [ Condusion] The research provided basis for ob- taining continuous distribution situation of the agricultural meteorological factor and establishing accurate prediction model of the spatial distribution in Hainan Island.展开更多
This paper presented an idea for the average brightness temperature of lossless antenna aperture, gave its expression for matched and dismatched noise source. This expression showed that the average brightness tempera...This paper presented an idea for the average brightness temperature of lossless antenna aperture, gave its expression for matched and dismatched noise source. This expression showed that the average brightness temperature of antenna aperture related with three factors: the noise temperature of noise source, the reflection coefficient of noise source, and the aperture efficiency.展开更多
The zonal averages of temperature (the so-called normal temperatures) for numerous parallels of latitude published between 1852 and 1913 by Dove, Forbes, Ferrel, Spitaler, Batchelder, Arrhenius, von Bezold, Hopfner, v...The zonal averages of temperature (the so-called normal temperatures) for numerous parallels of latitude published between 1852 and 1913 by Dove, Forbes, Ferrel, Spitaler, Batchelder, Arrhenius, von Bezold, Hopfner, von Hann, and Börnstein were used to quantify the global (spherical) and spheroidal mean near-surface temperature of the terrestrial atmosphere. Only the datasets of Dove and Forbes published in the 1850s provided global averages below 〈T〉=14°C, mainly due to the poor coverage of the Southern Hemisphere by observations during that time. The global averages derived from the distributions of normal temperatures published between 1877 and 1913 ranged from 〈T〉=14.0°C (Batchelder) to 〈T〉=15.1°C (Ferrel). The differences between the global and the spheroidal mean near-surface air temperature are marginal. To examine the uncertainty due to interannual variability and different years considered in the historic zonal mean temperature distributions, the historical normal temperatures were perturbed within ±2σ to obtain ensembles of 50 realizations for each dataset. Numerical integrations of the perturbed distributions indicate uncertainties in the global averages in the range of ±0.3°C to ±0.6°C and depended on the number of available normal temperatures. Compared to our results, the global mean temperature of 〈T〉=15.0°C published by von Hann in 1897 and von Bezold in 1901 and 1906 is notably too high, while 〈T〉=14.4°C published by von Hann in 1908 seems to be more adequate within the range of uncertainty. The HadCRUT4 record provided 〈T〉≌?13.7°C for 1851-1880 and 〈T〉=13.6°C for 1881-1910. The Berkeley record provided 〈T〉=13.6°C and 〈T〉≌?13.5°C for these periods, respectively. The NASA GISS record yielded 〈T〉=13.6°C for 1881-1910 as well. These results are notably lower than those based on the historic zonal means. For 1991-2018, the HadCRUT4, Berkeley, and NASA GISS records provided 〈T〉=14.4°C, 〈T〉=14.5°C, and 〈T〉=14.5°C, respectively. The comparison of the 1991-2018 globally averaged near-surface temperature with those derived from distributions of zonal temperature averages for numerous parallels of latitude suggests no change for the past 100 years.展开更多
[Objective] The research aimed to analyze change characteristics of the average temperature in Sichuan in 50 years.[Method] By using average temperature data at 156 stations of Sichuan from 1961 to 2010,interannual an...[Objective] The research aimed to analyze change characteristics of the average temperature in Sichuan in 50 years.[Method] By using average temperature data at 156 stations of Sichuan from 1961 to 2010,interannual and interdecadal evolution characteristics,regional and seasonal differences of the average temperature in Sichuan in 50 years were analyzed.[Result] Variations of the average temperatures in the whole province and each climatic region in 50 years all presented rise trends.Rise amplitude of the average temperature was obvious in the prior 10 years of the 21st century.Rise amplitude of the temperature was 0-0.5 ℃ in 48.7% of stations in the whole province,and was 0.5-1.0 ℃ in 32.3% of stations.Rise amplitude of the temperature was the maximum in winter.The second one was in spring,and the minimum was in autumn.The annual average temperature in the whole province in 50 years presented east-high-west-low spatial distribution.The regional difference was from-1.2 to 20.9 ℃,and temperature difference was 22.1 ℃.Interannual variation of the average temperature from 1961 to 1997 in the whole province was relatively stable.After that,it presented obvious fluctuation rise trend.Interdecadal variation of the average temperature from the 1960s to the 1990s was relatively stable,and average temperatures were from 8.56 to 8.86 ℃.The maximum interdecadal average temperatures in the whole province and each climatic region all emerged in the prior 10 years of the 21st century,while emergence decades of the minimums were different.[Conclusion] The research provided reference for analyzing climatic change characteristics in Sichuan.展开更多
Using the modern information technology,this paper analyzes the 20 years of experimental observation data of wheat ear differentiation research team led by Professor Cui Jinmei.It reveals that in the appropriate sowin...Using the modern information technology,this paper analyzes the 20 years of experimental observation data of wheat ear differentiation research team led by Professor Cui Jinmei.It reveals that in the appropriate sowing period,there is a quartic polynomial regression relationship between the sowing period and spike primordium period,namely between duration of vegetative growth stage and the average daily temperature.It is of great significance to determining the suitable sowing period of wheat.展开更多
Abstract: In 1876 Blytt proposed a post-glacial climatic classification, maintaining that the then temperature fluctuated 1–2°C higher or lower than that today. Lamb (1969) held that in Europe “the axis of the ...Abstract: In 1876 Blytt proposed a post-glacial climatic classification, maintaining that the then temperature fluctuated 1–2°C higher or lower than that today. Lamb (1969) held that in Europe “the axis of the subtropical high pressure belt was generally displaced north by about 10° latitudes” during the Hypsithermal and that the temperature was three to six times higher than that in the postglacial period.展开更多
The regularities of the dynamics of the average annual temperature of Irkutsk from 1820 to 2019 were revealed.It is proposed to use the sum of temperatures.However,this indicator requires the continuity of the dynamic...The regularities of the dynamics of the average annual temperature of Irkutsk from 1820 to 2019 were revealed.It is proposed to use the sum of temperatures.However,this indicator requires the continuity of the dynamic series,so for Irkutsk the sum of temperatures could be accepted only from 1873.The first three terms of the general wavelet model gave a very high correlation coefficient of 0.9996.The second indicator is a moving average,calculated as the ratio of the sum of temperatures to the current time.Here the first three wavelets gave a correlation coefficient of 0.9962.In the dynamics of the average annual temperature from 1820 to 2019,86 wavelets were obtained,of which 47 affect the future.The temperature has a high quantum certainty,and the change in the average annual temperature of Irkutsk is obtained up to a measurement error of 0.05℃,and the identification process occurs as a full wavelet analysis.The basis of the forecast in 200 years makes it possible to replace the non-linear two-term trend with an oscillatory perturbation.With an increase in the number of terms in the model,the ordinate of the average annual temperature increases:for three terms,the temperature interval is from-2.95℃ to 2.61℃;for 12 members from -4.06℃ to 4.02°C;for the forecast for 47 members for 2020-2220,from -4.62℃ to 4.40°C.展开更多
The identification method revealed asymmetric wavelets of dynamics, as fractal quanta of the behavior of the surface air layer at a height of 2 m, according to the average monthly temperature at four weather stations ...The identification method revealed asymmetric wavelets of dynamics, as fractal quanta of the behavior of the surface air layer at a height of 2 m, according to the average monthly temperature at four weather stations in India (Srinagar, Jolhpur, New Delhi and Guvahati). For Srinagar station, the maximum for all years is observed in July, for Jolhpur and New Delhi stations it shifts to June, and for Guvahati it shifts to August. With a high correlation coefficient of 0.9659, 0.8640 and 0.8687, a three-factor model of the form was obtained. The altitude, longitude and latitude of the station are given sequentially. The hottest month for Srinagar over a period of 130 years is in July. At the same time, the temperature increased from 23.4 °C to 24.2 °C (by 3.31%). A noticeable decrease in the intensity of heat flows in June occurred at Jolhpur (over 125 years, a decrease from 36.2 °C to 33.3 °C, or by 8.71%) and New Delhi (over 90 years, a decrease from 35.1 °C to 32.4 °C, or by 7.69%). For almost 120 years, Guvahati has experienced complex climate changes: In 1902, the hottest month was July, but in 2021 it has shifted to August. The increase in temperature at various stations is considered. At Srinagar station in 2021, compared to 1892, temperatures increased in June, September and October. Guvahati has a 120-year increase in December, January, March and April. Temperatures have risen in February, March and April at Jolhpur in 125 years, but have risen in February and March at New Delhi Station in 90 years. Despite the presence of tropical evergreen forests, the area around Guvahati Station is expected to experience strong warming.展开更多
The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the ...The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the key IRT features related to stress and crack evolution of loaded rocks is proposed.Specifically,the wavelet denoising and reconstruction in thermal image sequence(WDRTIS)method is employed to eliminate temporal noise in thermal image sequences.Subsequently,the adaptive partition temperature drift correction(APTDC)method is introduced to alleviate temperature drift.On this basis,the spatial noise correction method based on threshold segmentation and adaptive median filtering(OTSU-AMF)is proposed to extract the key IRT features associated with microcracks of loaded rocks.Following temperature drift correction,IRT provides an estimation of the thermoelastic factor in rocks,typically around 5.29×10^(-5) MPa^(-1) for sandstones.Results reveal that the high-temperature concentrated region in cumulative thermal images of crack evolution(TICE)can elucidate the spatiotemporal evolution of localized damage.Additionally,heat dissipation of crack evolution(HDCE)acquired from TICE quantifies the progressive failure process of rocks.The proposed methodology enhances the reliability of IRT monitoring results and provides an innovative approach for conducting research in rock mechanics and monitoring engineering disasters.展开更多
The choices of the parameterizations for each component in a microwave emission model have significant effects on the quality of brightness temperature (Tb) sim- ulation. How to reduce the uncertainty in the Tb simu...The choices of the parameterizations for each component in a microwave emission model have significant effects on the quality of brightness temperature (Tb) sim- ulation. How to reduce the uncertainty in the Tb simulation is investigated by adopting a statistical post-processing procedure with the Bayesian model averaging (BMA) ensemble approach. The simulations by the community microwave emission model (CMEM) cou- pled with the community land model version 4.5 (CLM4.5) over China's Mainland are con- ducted by the 24 configurations from four vegetation opacity parameterizations (VOPs), three soil dielectric constant parameterizations (SDCPs), and two soil roughness param- eterizations (SRPs). Compared with the simple arithmetical averaging (SAA) method, the BMA reconstructions have a higher spatial correlation coefficient (larger than 0.99) than the C-band satellite observations of the advanced microwave scanning radiometer on the Earth observing system (AMSR-E) at the vertical polarization. Moreover, the BMA product performs the best among the ensemble members for all vegetation classes, with a mean root-mean-square difference (RMSD) of 4 K and a temporal correlation coefficient of 0.64.展开更多
[Objective] This study aimed to analyze the characteristics of temperature variation in Zhangqiu City during the past 30 years. [Method] Variation characteristics of average annual maximum temperature, average annual ...[Objective] This study aimed to analyze the characteristics of temperature variation in Zhangqiu City during the past 30 years. [Method] Variation characteristics of average annual maximum temperature, average annual temperature and average annual minimum temperature in Zhangqiu City during the past 30 years were analyzed by using related temperature data during 1981 -2010 collected from National Meteorological Observation Station in Zhangqiu. [Result] Average annual maximum temperature, average annual temperature and average annual minimum temperature in Zhangqiu City showed an upward trend; average annual minimum temperature showed the most significant increasing tendency, with a tendency rate of 1.347 ℃/10 a; followed by average annual temperature; average annual maximum temperature showed the slowest increasing tendency, with a tendency rate of 0.062 ℃/10 a, indicating that the increase of average annual temperature mainly depended on the contribution of average annual minimum temperature. [Conclusion] This study provides reference and scientific basis for climate change monitoring, diagnosis, assessment, forecast and decision-making in Zhangqiu City.展开更多
Based on the data of monthly average air temperature,extreme maximum,minimum air temperature and precipitation of Shenyang from 1960 to 2009,the climate changes and its characteristics in Shenyang in recent 50 years w...Based on the data of monthly average air temperature,extreme maximum,minimum air temperature and precipitation of Shenyang from 1960 to 2009,the climate changes and its characteristics in Shenyang in recent 50 years were comprehensively analyzed and studied.The results showed that the increasing trend of air temperature in recent 50 years was obvious.With the rising of the air temperature,the precipitation in Shenyang City showed a decreasing trend.展开更多
In many cases, river discharge is indirectly estimated from water level or streamflow velocity near the water surface. However, these methods have limited applicability. In this study, an innovative system, the fluvia...In many cases, river discharge is indirectly estimated from water level or streamflow velocity near the water surface. However, these methods have limited applicability. In this study, an innovative system, the fluvial acoustic tomography system (FATS), was used for continuous discharge measurement. Transducers with a central frequency of 30 kHz were installed diagonally across the river. The system's significant functions include accurate measurement of the travel time of the transmission signal using a GPS clock and the attainment of a high signal-to-noise ratio as a result of modulation of the signal by the 10th order M-sequence. In addition, FATS is small and lightweight, and its power consumption is low. Operating in unsteady streamflow, FATS successfully measured the cross-sectional average velocity. The agreement between FATS and acoustic Doppler current profilers (ADCPs) on water discharge was satisfactory. Moreover, the temporal variation of the cross-sectional average temperature deduced from the sound speed of FATS was similar to that measured by a temperature sensor near the bank.展开更多
The electronic excitation temperature of a surface dielectric barrier discharge (DBD) at atmospheric pressure has been experimentally investigated by optical emission spectroscopic measurements combined with numeric...The electronic excitation temperature of a surface dielectric barrier discharge (DBD) at atmospheric pressure has been experimentally investigated by optical emission spectroscopic measurements combined with numerical simulation. Experiments have been carried out to deter- mine the spatial distribution of electric field by using FEM software and the electronic excitation temperature in discharge by calculating ratio of two relative intensities of atomic spectral lines. In this work, we choose seven Ar atomic emission lines at 415.86 nm [(3s^23p^5)5p →(3s^23p^5)4s] and 706.7 nm, 714.7 nm, 738.4 nm, 751.5 nm, 794.8 nm and 800.6 nm [(3s^23p^5)4p → (3s^23p^5)4s] to estimate the excitation temperature under a Boltzmann approximation. The average electron energy is evaluated in each discharge by using line ratio of 337.1 nm (N2(C^3Пu →B3Пg)) to 391.4 nm (N2^+(B2 ∑u^+→ ∑g^+)). Furthermore, variations of the electronic excitation tempera- ture are presented versus dielectric thickness and dielectric materials. The discharge is stable and uniform along the axial direction, and the electronic excitation temperature at the edge of the copper electrode is the largest. The corresponding average electron energy is in the range of 1.6- 5.1 eV and the electric field is in 1.7-3.2 MV/m, when the distance from copper electrode varies from 0 cm to 6 cm. Moreover, the electronic excitation temperature with a higher permittivity leads to a higher dissipated electrical power.展开更多
Mt.Everest (27°54' N,86°54' E),the highest peak,is often referred to as the earth's 'third' pole,at an elevation of 8844.43 m. Due to the difficult logistics in the extreme high elevation...Mt.Everest (27°54' N,86°54' E),the highest peak,is often referred to as the earth's 'third' pole,at an elevation of 8844.43 m. Due to the difficult logistics in the extreme high elevation regions over the Himalayas,observational meteorological data are very few on Mt. Everest. In 2005,an automatic weather station was operated at the East Rongbuk glacier Col of Mt. Everest over the Himalayas. The observational data have been compared with the reanalysis data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR),and the reliability of NCEP/NCAR reanalysis data has been investigated in the Himalayan region,after the reanalyzed data were interpolated in the horizontal to the location of Mt. Everest and in the vertical to the height of the observed sites. The reanalysis data can capture much of the synoptic-scale variability in temperature and pressure,although the reanalysis values are systematically lower than the observation. Furthermore,most of the variability magnitude is,to some degree,underestimated. In addition,the variation extracted from the NCEP/NCAR reanalyzed pressure and temperature prominently appears one-day lead to that from the observational data,which is more important from the standpoint of improving the safety of climbers who attempt to climb Mt. Everest peak.展开更多
[Objective] The research aimed to analyze temporal and spatial variation characteristics of temperature in Shangqiu City during 1961-2010.[Method] Based on temperature data in eight meteorological stations of Shangqiu...[Objective] The research aimed to analyze temporal and spatial variation characteristics of temperature in Shangqiu City during 1961-2010.[Method] Based on temperature data in eight meteorological stations of Shangqiu during 1961-2010,by using trend analysis method,the temporal and spatial evolution characteristics of annual average temperature,annual average maximum and minimum temperatures,annual extreme maximum and minimum temperatures,daily range of annual average temperature in Shangqiu City were analyzed.M-K method was used to determine mutation year of temperature.[Result] The annual average temperature,annual average minimum temperature and annual extreme minimum temperature respectively rose at 0.122,0.255 and 0.488 ℃/10 a.The variation trend of annual average maximum temperature wasn’t obvious.The daily range of annual average temperature and annual extreme maximum temperature respectively declined at-0.217 and-0.292 ℃/10 a.Seen from spatial distribution,the increase amplitudes of annual average temperature,annual average minimum temperature and annual extreme minimum temperature were all large in the east and small in the west.The decrease amplitude of daily range of annual average temperature was large in the east and small in the west.The decrease amplitude of annual extreme maximum temperature was large in the west and small in the east.The annual average maximum temperature had trends of increase and decrease.The annual average temperature,annual average minimum temperature and daily range of annual average temperature all mutated in 1997.The annual average maximum temperature didn’t have obvious mutation point.The annual extreme maximum temperature mutated in 1973.The annual extreme minimum temperature respectively mutated in 1989 and 1999.[Conclusion] The research played important guidance significances in adjustment of agricultural production structure,regional climate planning,reasonably using climate resource and replying climate change in Shangqiu City.展开更多
Accurate decay detection and health assessment of trees at low temperatures is an important issue for forest management and ecology in cold areas.Low temperature ice formation on tree health assessment is unknown.Beca...Accurate decay detection and health assessment of trees at low temperatures is an important issue for forest management and ecology in cold areas.Low temperature ice formation on tree health assessment is unknown.Because electric resistance tomography and stress wave tomography are two widely used methods for the detection of tree decay,this study investigated the effect of ice content on trunk electrical resistance and stress wave velocity to improve tree health assessment accuracy.Moisture content,trunk electrical resistance and stress wave velocity using time domain reflectometry were carried out on Larix gmelinii and Populus simonii.Ice content is based on moisture content data.The ice content of both species showed a trend of increasing and then decreasing.This was opposite with ambient temperatures.With the decrease of temperatures,daily average ice content increased,but the range narrowed gradually and both electrical resistance and stress wave velocity increased.Both increased rapidly near 0℃,mainly caused by ice formation(phase change and freezing of free water)in live trees.In addition,both are positively correlated with ice content.The results suggest that ice content should be considered for improving the accuracy of tree decay detection and health evaluation using electric resistance tomography and stress wave velocity methods under low temperatures.展开更多
The swung gel fibers were hea, ted to 400 ℃ at 0. .5 ,1, 1.5,2,2.5,3and4 ℃ min^-1 of heating rate, respectivel, and soaked.for 1 h ; then heated to 600 ℃ at 3 ℃ min ^-1 of.heating rate amt soaked for 1 h at last ...The swung gel fibers were hea, ted to 400 ℃ at 0. .5 ,1, 1.5,2,2.5,3and4 ℃ min^-1 of heating rate, respectivel, and soaked.for 1 h ; then heated to 600 ℃ at 3 ℃ min ^-1 of.heating rate amt soaked for 1 h at last calcined m 1 000, 1 100, 1 200, 1 300, and 1 400 ℃.for 1 h, respectively.展开更多
The solar climate of our Moon is analyzed using the results of numerical simulations and the recently released data of the Diviner Lunar Radiometer Experiment (DLRE) to assess (a) the resulting distribution of the sur...The solar climate of our Moon is analyzed using the results of numerical simulations and the recently released data of the Diviner Lunar Radiometer Experiment (DLRE) to assess (a) the resulting distribution of the surface temperature, (b) the related global mean surface temperature T<sub>s</sub>>, and (c) the effective radiation temperature T<sub>e</sub> <sub></sub>often considered as a proxy for T<sub>s</sub>> of rocky planets and/or their natural satellites, where T<sub>e</sub> <sub></sub>is based on the global radiation budget of the well-known “thought model” of the Earth in the absence of its atmosphere. Because the Moon consists of similar rocky material like the Earth, it comes close to this thought model. However, the Moon’s astronomical features (e.g., obliquity, angular velocity of rotation, position relative to the disc of the solar system) differ from that of the Earth. Being tidally locked to the Earth, the Moon’s orbit around the Sun shows additional variation as compared to the Earth’s orbit. Since the astronomical parameters affect the solar climate, we predicted the Moon’s orbit coordinates both relative to the Sun and the Earth for a period of 20 lunations starting May 24, 2009, 00:00 UT1 with the planetary and lunar ephemeris DE430 of the Jet Propulsion Laboratory of the California Institute of Technology. The results revealed a mean heliocentric distance for the Moon and Earth of 1.00124279 AU and 1.00166376 AU, respectively. The mean geocentric distance of the Moon was 384792 km. The synodic and draconic months deviated from their respective means in a range of -5.7 h to 6.9 h and ±3.4 h, respectively. The deviations of the anomalistic months from their mean range between -2.83 d and 0.97 d with the largest negative deviations occurring around the points of inflection in the curve that represents the departure of the synodic month from its mean. Based on the two successive passages of the Sun through the ascending node of the lunar equator plane, the time interval between them corresponds to 347.29 days, i.e., it is slightly longer than the mean draconic year of 346.62 days. We computed the local solar insolation as input to the multilayer-force restore method of Kramm et al. (2017) that is based on the local energy budget equation. Due to the need to spin up the distribution of the regolith temperature to equilibrium, analysis of the model results covers only the last 12 lunations starting January 15, 2010, 07:11 UT1. The predicted slab temperatures, T<sub>slab</sub>, considered as the realistic surface temperatures, follow the bolometric temperatures, T<sub>bol</sub>, acceptably. According to all 24 DLRE datasets related to the subsolar longitude ø<sub>ss</sub>, the global averages of the bolometric temperature amounts to T<sub>bol</sub>=201.1k± 0.6K. Based on the globally averaged emitted infrared radiation of F<sub>IR</sub>>=290.5W·m<sup>-2</sup>± 3.0W·m<sup>-2</sup> derived from the 24 DLRE datasets, the effective radiative temperature of the Moon is T<sub>e, M</sub>>=T<sub>bol>1/4</sub>=271.0k± 0.7K so that T<sub>bol</sub>>≅0.742T<sub>e, M</sub>. The DLRE observations suggest that in the case of rocky planets and their natural satellites, the globally averaged surface temperature is notably lower than the effective radiation temperature. They differ by a factor that depends on the astronomical parameters especially on the angular velocity of rotation.展开更多
基金supported by the National Natural Science Foundation of China (No. 50578120)the National High Technology Research and Development Program of China (863 Program) (No. 2006AA11Z118)
文摘The average temperature of frozen soil wall is an essential parameter in the process of design, construction, and safety manage- ment of artificial ground freezing engineering. It is the basis of calculating frozen soil's mechanical parameters, fiarther prediction of bearing capacity and, ultimately, safety evaluation of the frozen soil wall. Regarding the average temperature of sin- gle-row-piped frozen soil wall, this paper summarizes several current calculation methods and their shortcomings. Furthermore, on the basis of Bakholdin's analytical solution for the temperature field under straight single-row-piped freezing, two new calcula- tion models, namely, the equivalent trapezoid model and the equivalent triangle model, are proposed. These two approaches are used to calculate the average temperature of a certain cross section which indicates the condition of the whole frozen soil wall. Considering the possible parameter range according to the freezing pipe layout that might be applied in actual construction, this paper compares the average temperatures of frozen soil walls obtained by the equivalent trapezoid method and the equivalent tri- angle method with that obtained by numerical integration of Bakholdin's analytical solution. The results show that the discrepancies are extremely small and these two new approaches are better than currently prevailing methods. However, the equivalent triangle method boasts higher accuracy and a simpler formula compared with the equivalent trapezoid method.
基金Supported by "Project 211" Construction Item,Hainan UniversityBasic Science Research Business Expense,Rubber Research Institute ,CATAS[YWFZX09-03(N)]Special Item of the Modern Agricultural Industrial Technology System Construction(CARS-34)
文摘[ Objectivel The research aimed to study prediction model for spatial distribution of the average temperature based on GIS. [ Method l Average temperature over the years as research object, based on Ordinary Kriging (OK), Inverse Distance Weight ( IDW), SPLINE and Mixed In- terpolation (MLR), monthly temperature data from 1979 to 2008 at 18 long-term meteorological observation stations in Hainan Island were conduc- ted spatial grid treatment. Via contrasts and analyses on different interpolation methods, the optimum interpolation method for average temperature over the years in Hainan Island was selected. [ Resuitl By error analyses of the four interpolation methods for average temperature in recent 30 years in Hainan Island, it was found that accuracy was MLR 〉 IDW 〉 OK 〉 SPLINE. Spatial interpolation effect of MLR was the best for average temperature in Hainan Island. Spatial distribution of the average temperature in Halnan Island had obvious south-high-north-low latitudinal zonality and vertical zonality of gradually declining as altitude rise. In addition, temperature along coast was slightly higher than that in inland. Lapse rate of the temperature in each month in Hainan Island was 0.38 -0.85℃/100 m, and lapse rate of the annual average temperature was about 0.74 ℃/ 100 m. In different areas, lapse rate of the temperature as altitude was different at different time. [ Condusion] The research provided basis for ob- taining continuous distribution situation of the agricultural meteorological factor and establishing accurate prediction model of the spatial distribution in Hainan Island.
文摘This paper presented an idea for the average brightness temperature of lossless antenna aperture, gave its expression for matched and dismatched noise source. This expression showed that the average brightness temperature of antenna aperture related with three factors: the noise temperature of noise source, the reflection coefficient of noise source, and the aperture efficiency.
文摘The zonal averages of temperature (the so-called normal temperatures) for numerous parallels of latitude published between 1852 and 1913 by Dove, Forbes, Ferrel, Spitaler, Batchelder, Arrhenius, von Bezold, Hopfner, von Hann, and Börnstein were used to quantify the global (spherical) and spheroidal mean near-surface temperature of the terrestrial atmosphere. Only the datasets of Dove and Forbes published in the 1850s provided global averages below 〈T〉=14°C, mainly due to the poor coverage of the Southern Hemisphere by observations during that time. The global averages derived from the distributions of normal temperatures published between 1877 and 1913 ranged from 〈T〉=14.0°C (Batchelder) to 〈T〉=15.1°C (Ferrel). The differences between the global and the spheroidal mean near-surface air temperature are marginal. To examine the uncertainty due to interannual variability and different years considered in the historic zonal mean temperature distributions, the historical normal temperatures were perturbed within ±2σ to obtain ensembles of 50 realizations for each dataset. Numerical integrations of the perturbed distributions indicate uncertainties in the global averages in the range of ±0.3°C to ±0.6°C and depended on the number of available normal temperatures. Compared to our results, the global mean temperature of 〈T〉=15.0°C published by von Hann in 1897 and von Bezold in 1901 and 1906 is notably too high, while 〈T〉=14.4°C published by von Hann in 1908 seems to be more adequate within the range of uncertainty. The HadCRUT4 record provided 〈T〉≌?13.7°C for 1851-1880 and 〈T〉=13.6°C for 1881-1910. The Berkeley record provided 〈T〉=13.6°C and 〈T〉≌?13.5°C for these periods, respectively. The NASA GISS record yielded 〈T〉=13.6°C for 1881-1910 as well. These results are notably lower than those based on the historic zonal means. For 1991-2018, the HadCRUT4, Berkeley, and NASA GISS records provided 〈T〉=14.4°C, 〈T〉=14.5°C, and 〈T〉=14.5°C, respectively. The comparison of the 1991-2018 globally averaged near-surface temperature with those derived from distributions of zonal temperature averages for numerous parallels of latitude suggests no change for the past 100 years.
文摘[Objective] The research aimed to analyze change characteristics of the average temperature in Sichuan in 50 years.[Method] By using average temperature data at 156 stations of Sichuan from 1961 to 2010,interannual and interdecadal evolution characteristics,regional and seasonal differences of the average temperature in Sichuan in 50 years were analyzed.[Result] Variations of the average temperatures in the whole province and each climatic region in 50 years all presented rise trends.Rise amplitude of the average temperature was obvious in the prior 10 years of the 21st century.Rise amplitude of the temperature was 0-0.5 ℃ in 48.7% of stations in the whole province,and was 0.5-1.0 ℃ in 32.3% of stations.Rise amplitude of the temperature was the maximum in winter.The second one was in spring,and the minimum was in autumn.The annual average temperature in the whole province in 50 years presented east-high-west-low spatial distribution.The regional difference was from-1.2 to 20.9 ℃,and temperature difference was 22.1 ℃.Interannual variation of the average temperature from 1961 to 1997 in the whole province was relatively stable.After that,it presented obvious fluctuation rise trend.Interdecadal variation of the average temperature from the 1960s to the 1990s was relatively stable,and average temperatures were from 8.56 to 8.86 ℃.The maximum interdecadal average temperatures in the whole province and each climatic region all emerged in the prior 10 years of the 21st century,while emergence decades of the minimums were different.[Conclusion] The research provided reference for analyzing climatic change characteristics in Sichuan.
基金Supported by National"12th Five-year Plan"Technology Support Program(2014BAD10B06)Major Research Project in Henan Province(30600341)
文摘Using the modern information technology,this paper analyzes the 20 years of experimental observation data of wheat ear differentiation research team led by Professor Cui Jinmei.It reveals that in the appropriate sowing period,there is a quartic polynomial regression relationship between the sowing period and spike primordium period,namely between duration of vegetative growth stage and the average daily temperature.It is of great significance to determining the suitable sowing period of wheat.
文摘Abstract: In 1876 Blytt proposed a post-glacial climatic classification, maintaining that the then temperature fluctuated 1–2°C higher or lower than that today. Lamb (1969) held that in Europe “the axis of the subtropical high pressure belt was generally displaced north by about 10° latitudes” during the Hypsithermal and that the temperature was three to six times higher than that in the postglacial period.
文摘The regularities of the dynamics of the average annual temperature of Irkutsk from 1820 to 2019 were revealed.It is proposed to use the sum of temperatures.However,this indicator requires the continuity of the dynamic series,so for Irkutsk the sum of temperatures could be accepted only from 1873.The first three terms of the general wavelet model gave a very high correlation coefficient of 0.9996.The second indicator is a moving average,calculated as the ratio of the sum of temperatures to the current time.Here the first three wavelets gave a correlation coefficient of 0.9962.In the dynamics of the average annual temperature from 1820 to 2019,86 wavelets were obtained,of which 47 affect the future.The temperature has a high quantum certainty,and the change in the average annual temperature of Irkutsk is obtained up to a measurement error of 0.05℃,and the identification process occurs as a full wavelet analysis.The basis of the forecast in 200 years makes it possible to replace the non-linear two-term trend with an oscillatory perturbation.With an increase in the number of terms in the model,the ordinate of the average annual temperature increases:for three terms,the temperature interval is from-2.95℃ to 2.61℃;for 12 members from -4.06℃ to 4.02°C;for the forecast for 47 members for 2020-2220,from -4.62℃ to 4.40°C.
文摘The identification method revealed asymmetric wavelets of dynamics, as fractal quanta of the behavior of the surface air layer at a height of 2 m, according to the average monthly temperature at four weather stations in India (Srinagar, Jolhpur, New Delhi and Guvahati). For Srinagar station, the maximum for all years is observed in July, for Jolhpur and New Delhi stations it shifts to June, and for Guvahati it shifts to August. With a high correlation coefficient of 0.9659, 0.8640 and 0.8687, a three-factor model of the form was obtained. The altitude, longitude and latitude of the station are given sequentially. The hottest month for Srinagar over a period of 130 years is in July. At the same time, the temperature increased from 23.4 °C to 24.2 °C (by 3.31%). A noticeable decrease in the intensity of heat flows in June occurred at Jolhpur (over 125 years, a decrease from 36.2 °C to 33.3 °C, or by 8.71%) and New Delhi (over 90 years, a decrease from 35.1 °C to 32.4 °C, or by 7.69%). For almost 120 years, Guvahati has experienced complex climate changes: In 1902, the hottest month was July, but in 2021 it has shifted to August. The increase in temperature at various stations is considered. At Srinagar station in 2021, compared to 1892, temperatures increased in June, September and October. Guvahati has a 120-year increase in December, January, March and April. Temperatures have risen in February, March and April at Jolhpur in 125 years, but have risen in February and March at New Delhi Station in 90 years. Despite the presence of tropical evergreen forests, the area around Guvahati Station is expected to experience strong warming.
基金supported by the National Natural Science Foundation of China(No.51874280)the Fundamental Research Funds for the Central Universities(No.2021ZDPY0211)+2 种基金the Graduate Innovation Program of China University of Mining and Technology(No.2023WLKXJ046)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX23_2811)the Project of Liaoning Provincial Department of Education(No.JYTMS20231458).
文摘The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the key IRT features related to stress and crack evolution of loaded rocks is proposed.Specifically,the wavelet denoising and reconstruction in thermal image sequence(WDRTIS)method is employed to eliminate temporal noise in thermal image sequences.Subsequently,the adaptive partition temperature drift correction(APTDC)method is introduced to alleviate temperature drift.On this basis,the spatial noise correction method based on threshold segmentation and adaptive median filtering(OTSU-AMF)is proposed to extract the key IRT features associated with microcracks of loaded rocks.Following temperature drift correction,IRT provides an estimation of the thermoelastic factor in rocks,typically around 5.29×10^(-5) MPa^(-1) for sandstones.Results reveal that the high-temperature concentrated region in cumulative thermal images of crack evolution(TICE)can elucidate the spatiotemporal evolution of localized damage.Additionally,heat dissipation of crack evolution(HDCE)acquired from TICE quantifies the progressive failure process of rocks.The proposed methodology enhances the reliability of IRT monitoring results and provides an innovative approach for conducting research in rock mechanics and monitoring engineering disasters.
基金Project supported by the China Special Fund for Meteorological Research in the Public Interest(No.GYHY201306045)the National Natural Science Foundation of China(Nos.41305066 and41575096)
文摘The choices of the parameterizations for each component in a microwave emission model have significant effects on the quality of brightness temperature (Tb) sim- ulation. How to reduce the uncertainty in the Tb simulation is investigated by adopting a statistical post-processing procedure with the Bayesian model averaging (BMA) ensemble approach. The simulations by the community microwave emission model (CMEM) cou- pled with the community land model version 4.5 (CLM4.5) over China's Mainland are con- ducted by the 24 configurations from four vegetation opacity parameterizations (VOPs), three soil dielectric constant parameterizations (SDCPs), and two soil roughness param- eterizations (SRPs). Compared with the simple arithmetical averaging (SAA) method, the BMA reconstructions have a higher spatial correlation coefficient (larger than 0.99) than the C-band satellite observations of the advanced microwave scanning radiometer on the Earth observing system (AMSR-E) at the vertical polarization. Moreover, the BMA product performs the best among the ensemble members for all vegetation classes, with a mean root-mean-square difference (RMSD) of 4 K and a temporal correlation coefficient of 0.64.
文摘[Objective] This study aimed to analyze the characteristics of temperature variation in Zhangqiu City during the past 30 years. [Method] Variation characteristics of average annual maximum temperature, average annual temperature and average annual minimum temperature in Zhangqiu City during the past 30 years were analyzed by using related temperature data during 1981 -2010 collected from National Meteorological Observation Station in Zhangqiu. [Result] Average annual maximum temperature, average annual temperature and average annual minimum temperature in Zhangqiu City showed an upward trend; average annual minimum temperature showed the most significant increasing tendency, with a tendency rate of 1.347 ℃/10 a; followed by average annual temperature; average annual maximum temperature showed the slowest increasing tendency, with a tendency rate of 0.062 ℃/10 a, indicating that the increase of average annual temperature mainly depended on the contribution of average annual minimum temperature. [Conclusion] This study provides reference and scientific basis for climate change monitoring, diagnosis, assessment, forecast and decision-making in Zhangqiu City.
文摘Based on the data of monthly average air temperature,extreme maximum,minimum air temperature and precipitation of Shenyang from 1960 to 2009,the climate changes and its characteristics in Shenyang in recent 50 years were comprehensively analyzed and studied.The results showed that the increasing trend of air temperature in recent 50 years was obvious.With the rising of the air temperature,the precipitation in Shenyang City showed a decreasing trend.
基金supported by the Construction Technology Research and Development Program of the Ministry of Land,Infrastructure,Transport and Tourism of Japan (No.31)the River Fund (N0.19-1212-005,21-1212-009)
文摘In many cases, river discharge is indirectly estimated from water level or streamflow velocity near the water surface. However, these methods have limited applicability. In this study, an innovative system, the fluvial acoustic tomography system (FATS), was used for continuous discharge measurement. Transducers with a central frequency of 30 kHz were installed diagonally across the river. The system's significant functions include accurate measurement of the travel time of the transmission signal using a GPS clock and the attainment of a high signal-to-noise ratio as a result of modulation of the signal by the 10th order M-sequence. In addition, FATS is small and lightweight, and its power consumption is low. Operating in unsteady streamflow, FATS successfully measured the cross-sectional average velocity. The agreement between FATS and acoustic Doppler current profilers (ADCPs) on water discharge was satisfactory. Moreover, the temporal variation of the cross-sectional average temperature deduced from the sound speed of FATS was similar to that measured by a temperature sensor near the bank.
文摘The electronic excitation temperature of a surface dielectric barrier discharge (DBD) at atmospheric pressure has been experimentally investigated by optical emission spectroscopic measurements combined with numerical simulation. Experiments have been carried out to deter- mine the spatial distribution of electric field by using FEM software and the electronic excitation temperature in discharge by calculating ratio of two relative intensities of atomic spectral lines. In this work, we choose seven Ar atomic emission lines at 415.86 nm [(3s^23p^5)5p →(3s^23p^5)4s] and 706.7 nm, 714.7 nm, 738.4 nm, 751.5 nm, 794.8 nm and 800.6 nm [(3s^23p^5)4p → (3s^23p^5)4s] to estimate the excitation temperature under a Boltzmann approximation. The average electron energy is evaluated in each discharge by using line ratio of 337.1 nm (N2(C^3Пu →B3Пg)) to 391.4 nm (N2^+(B2 ∑u^+→ ∑g^+)). Furthermore, variations of the electronic excitation tempera- ture are presented versus dielectric thickness and dielectric materials. The discharge is stable and uniform along the axial direction, and the electronic excitation temperature at the edge of the copper electrode is the largest. The corresponding average electron energy is in the range of 1.6- 5.1 eV and the electric field is in 1.7-3.2 MV/m, when the distance from copper electrode varies from 0 cm to 6 cm. Moreover, the electronic excitation temperature with a higher permittivity leads to a higher dissipated electrical power.
基金the Strategic Study Foundation of Chinese Polar Science (Grant No. 2007228) the National Nature Science Foundation of China (Grant No. 40501015) the Chinese Academy of Science (Grant No. KZCX3-SW-354 and KZCX3-SW-344).
文摘Mt.Everest (27°54' N,86°54' E),the highest peak,is often referred to as the earth's 'third' pole,at an elevation of 8844.43 m. Due to the difficult logistics in the extreme high elevation regions over the Himalayas,observational meteorological data are very few on Mt. Everest. In 2005,an automatic weather station was operated at the East Rongbuk glacier Col of Mt. Everest over the Himalayas. The observational data have been compared with the reanalysis data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR),and the reliability of NCEP/NCAR reanalysis data has been investigated in the Himalayan region,after the reanalyzed data were interpolated in the horizontal to the location of Mt. Everest and in the vertical to the height of the observed sites. The reanalysis data can capture much of the synoptic-scale variability in temperature and pressure,although the reanalysis values are systematically lower than the observation. Furthermore,most of the variability magnitude is,to some degree,underestimated. In addition,the variation extracted from the NCEP/NCAR reanalyzed pressure and temperature prominently appears one-day lead to that from the observational data,which is more important from the standpoint of improving the safety of climbers who attempt to climb Mt. Everest peak.
文摘[Objective] The research aimed to analyze temporal and spatial variation characteristics of temperature in Shangqiu City during 1961-2010.[Method] Based on temperature data in eight meteorological stations of Shangqiu during 1961-2010,by using trend analysis method,the temporal and spatial evolution characteristics of annual average temperature,annual average maximum and minimum temperatures,annual extreme maximum and minimum temperatures,daily range of annual average temperature in Shangqiu City were analyzed.M-K method was used to determine mutation year of temperature.[Result] The annual average temperature,annual average minimum temperature and annual extreme minimum temperature respectively rose at 0.122,0.255 and 0.488 ℃/10 a.The variation trend of annual average maximum temperature wasn’t obvious.The daily range of annual average temperature and annual extreme maximum temperature respectively declined at-0.217 and-0.292 ℃/10 a.Seen from spatial distribution,the increase amplitudes of annual average temperature,annual average minimum temperature and annual extreme minimum temperature were all large in the east and small in the west.The decrease amplitude of daily range of annual average temperature was large in the east and small in the west.The decrease amplitude of annual extreme maximum temperature was large in the west and small in the east.The annual average maximum temperature had trends of increase and decrease.The annual average temperature,annual average minimum temperature and daily range of annual average temperature all mutated in 1997.The annual average maximum temperature didn’t have obvious mutation point.The annual extreme maximum temperature mutated in 1973.The annual extreme minimum temperature respectively mutated in 1989 and 1999.[Conclusion] The research played important guidance significances in adjustment of agricultural production structure,regional climate planning,reasonably using climate resource and replying climate change in Shangqiu City.
基金supported by the National Natural Science Foundation of China (Grant No.31870537)Innovation Foundation for Doctoral Program of Forestry Engineering of Northeast Forestry University (Grant No.LYGC202115)National Key Research and Development Program of China (Grant No.2021YFD2201205)。
文摘Accurate decay detection and health assessment of trees at low temperatures is an important issue for forest management and ecology in cold areas.Low temperature ice formation on tree health assessment is unknown.Because electric resistance tomography and stress wave tomography are two widely used methods for the detection of tree decay,this study investigated the effect of ice content on trunk electrical resistance and stress wave velocity to improve tree health assessment accuracy.Moisture content,trunk electrical resistance and stress wave velocity using time domain reflectometry were carried out on Larix gmelinii and Populus simonii.Ice content is based on moisture content data.The ice content of both species showed a trend of increasing and then decreasing.This was opposite with ambient temperatures.With the decrease of temperatures,daily average ice content increased,but the range narrowed gradually and both electrical resistance and stress wave velocity increased.Both increased rapidly near 0℃,mainly caused by ice formation(phase change and freezing of free water)in live trees.In addition,both are positively correlated with ice content.The results suggest that ice content should be considered for improving the accuracy of tree decay detection and health evaluation using electric resistance tomography and stress wave velocity methods under low temperatures.
文摘The swung gel fibers were hea, ted to 400 ℃ at 0. .5 ,1, 1.5,2,2.5,3and4 ℃ min^-1 of heating rate, respectivel, and soaked.for 1 h ; then heated to 600 ℃ at 3 ℃ min ^-1 of.heating rate amt soaked for 1 h at last calcined m 1 000, 1 100, 1 200, 1 300, and 1 400 ℃.for 1 h, respectively.
文摘The solar climate of our Moon is analyzed using the results of numerical simulations and the recently released data of the Diviner Lunar Radiometer Experiment (DLRE) to assess (a) the resulting distribution of the surface temperature, (b) the related global mean surface temperature T<sub>s</sub>>, and (c) the effective radiation temperature T<sub>e</sub> <sub></sub>often considered as a proxy for T<sub>s</sub>> of rocky planets and/or their natural satellites, where T<sub>e</sub> <sub></sub>is based on the global radiation budget of the well-known “thought model” of the Earth in the absence of its atmosphere. Because the Moon consists of similar rocky material like the Earth, it comes close to this thought model. However, the Moon’s astronomical features (e.g., obliquity, angular velocity of rotation, position relative to the disc of the solar system) differ from that of the Earth. Being tidally locked to the Earth, the Moon’s orbit around the Sun shows additional variation as compared to the Earth’s orbit. Since the astronomical parameters affect the solar climate, we predicted the Moon’s orbit coordinates both relative to the Sun and the Earth for a period of 20 lunations starting May 24, 2009, 00:00 UT1 with the planetary and lunar ephemeris DE430 of the Jet Propulsion Laboratory of the California Institute of Technology. The results revealed a mean heliocentric distance for the Moon and Earth of 1.00124279 AU and 1.00166376 AU, respectively. The mean geocentric distance of the Moon was 384792 km. The synodic and draconic months deviated from their respective means in a range of -5.7 h to 6.9 h and ±3.4 h, respectively. The deviations of the anomalistic months from their mean range between -2.83 d and 0.97 d with the largest negative deviations occurring around the points of inflection in the curve that represents the departure of the synodic month from its mean. Based on the two successive passages of the Sun through the ascending node of the lunar equator plane, the time interval between them corresponds to 347.29 days, i.e., it is slightly longer than the mean draconic year of 346.62 days. We computed the local solar insolation as input to the multilayer-force restore method of Kramm et al. (2017) that is based on the local energy budget equation. Due to the need to spin up the distribution of the regolith temperature to equilibrium, analysis of the model results covers only the last 12 lunations starting January 15, 2010, 07:11 UT1. The predicted slab temperatures, T<sub>slab</sub>, considered as the realistic surface temperatures, follow the bolometric temperatures, T<sub>bol</sub>, acceptably. According to all 24 DLRE datasets related to the subsolar longitude ø<sub>ss</sub>, the global averages of the bolometric temperature amounts to T<sub>bol</sub>=201.1k± 0.6K. Based on the globally averaged emitted infrared radiation of F<sub>IR</sub>>=290.5W·m<sup>-2</sup>± 3.0W·m<sup>-2</sup> derived from the 24 DLRE datasets, the effective radiative temperature of the Moon is T<sub>e, M</sub>>=T<sub>bol>1/4</sub>=271.0k± 0.7K so that T<sub>bol</sub>>≅0.742T<sub>e, M</sub>. The DLRE observations suggest that in the case of rocky planets and their natural satellites, the globally averaged surface temperature is notably lower than the effective radiation temperature. They differ by a factor that depends on the astronomical parameters especially on the angular velocity of rotation.