This paper investigated average cluster sizes (ACS) and cluster size distributions (CSD) at different shear rates by Brownian dynamics in non-, bi-, and uni-polar systems with partly charged superfine particles, T...This paper investigated average cluster sizes (ACS) and cluster size distributions (CSD) at different shear rates by Brownian dynamics in non-, bi-, and uni-polar systems with partly charged superfine particles, The investigation indicates that clusters in non- polar systems are the weakest and easiest to be damaged by increasing shear stresses; charged particles play important and different roles: in bi-polar system, it intends to strengthen clusters to some extent provided that the sign-like ions homogeneously arranged; in uni-polar system charged particles cracked the clusters into smaller ones, but the small clusters are strong to stand with larger shear stress. The relationship between ACS and shear rates follows power law with exponents in a range 0.18-0.28, these values are in a good agreement with experiment range but at the lower limit compared with other systems of non-metallic cluster particles.展开更多
Fluidization characteristics of silicon particle system are studied by the pressure fluctuation method.The existence of fine particles in the system can improve fluidization. Silicon particles with a wide size distrib...Fluidization characteristics of silicon particle system are studied by the pressure fluctuation method.The existence of fine particles in the system can improve fluidization. Silicon particles with a wide size distribution,preferably with some fines, behave as Group A particles according to Geldart classification, although the system belongs to Group B actually. The system is also approved to be suitable for organochlorosilane monomer production using a fluidized bed reactor. Experimental data obtained in this work are important for the design and operation of commercial fluidized bed reactors for the production of organochlorosilane monomers.展开更多
In order to deal with the disadvantages of excessive grinding and non-uniformity in finished particle under high-pressure grinding rolls (HPGR) finished grinding system, four aspects were investigated, including eva...In order to deal with the disadvantages of excessive grinding and non-uniformity in finished particle under high-pressure grinding rolls (HPGR) finished grinding system, four aspects were investigated, including evaluating indicators, effects of operating factors, effect of particle uniformity on the flotation and formation mechanism of particle uniformity. Experiment of HPGR finished grinding system, cationic reverse flotation experiment and simulation test of particle bed comminution under the condition of quasi-static were carried out. Theoretical analyses indicated that both of uniformity coefficient and average particle size should be included in the uniformity analysis of the mineral particles. The results show that the effect of circulation fan impeller speed on particle uniformity is the most evident, HPGR working pressure and roll gap are second and HPGR roller speed is the last. Average particle size has a more obvious effect on the grade of flotation concentrate while uniformity coefficient has a more obvious effect on the flotation recovery. Considering the two aspects of grade and recovery, the optimal uniformity coefficient for flotation is 1.1-1.2 and the optimal average particle size for flotation is 50-55 μm. The operating factors which promote the shielding effect and compact effect in the HPGR finished grinding system should be strengthened based on the uniformity of particles.展开更多
The pore configuration in porous medium is assumed to be the randomly distributed cube-like particles which can overlap each other in the periodic cubic domain, and the impact of particle characteristics on the percol...The pore configuration in porous medium is assumed to be the randomly distributed cube-like particles which can overlap each other in the periodic cubic domain, and the impact of particle characteristics on the percolation property of these cube-like particle packing systems is analyzed.Firstly, by combining the percolation models and finite-size scaling analysis, three numerical parameters(i.e., percolation transition width △L, local percolation threshold ψ_c(L), and correlation length exponent v) for the cube-like particle systems with shape parameter s in[1.0, +∞] are derived successively. Then, based on the relation between the percolation thresholdψ_c in infinite space and the local percolation threshold ψ_c(L), the corresponding ψ_c with s in[1.0, +∞] are further determined. It is shown from the study that the characteristics of cube-like particles have significant influence on the global percolation threshold ψ_c of the particle packing systems. As the parameter s increases from 1.0 to +∞, the percolation threshold ψ_c will go down persistently. When the surface of cube-like particles is cubical and spherical, respectively, the minimum and maximum thresholds ψ_c,min and ψ_c,max are obtained.展开更多
The effective medium approximation (EMA) theory is the basis of a capacitance sensor used for concen-tration measurementof a particulate solid flow, its measurementresultis independenton particle size. In existence of...The effective medium approximation (EMA) theory is the basis of a capacitance sensor used for concen-tration measurementof a particulate solid flow, its measurementresultis independenton particle size. In existence ofparticle agglomeration or aggradation, however, it is found that the effective permittivity of a gas/solid mixture is de-pendent on particle size. In this paper, a parallel plate, differential capacitance sensor is utilized to investigate theinfluence of particle size on the effective permittivity of the mixture in such a case. Static experiments using threematerials including glass, limestone and quartz particles were carried out in an off-line manner. The volume fractionof particles being tested ranged from20×10-6to 600×10-6, while the particle size was between 3 and 100μm.Experimental results showthat the effective permittivity of a particle-gas mixture with particle agglomeration is largerthan that predicted by EMA and the smaller the particle size, the larger the effective permittivity. The experimentprocess and analysis results are discussed in detail in the paper.展开更多
Given image sequences of closely packed particles, the underlying aim is to estimate diameters without explicit segmentation. In a way, this is similar to the task of counting objects without directly counting them. S...Given image sequences of closely packed particles, the underlying aim is to estimate diameters without explicit segmentation. In a way, this is similar to the task of counting objects without directly counting them. Such calculations may, for example, be useful)Cast estimation of particle size in different application areas. The topic is that of estimating average size (=average diameter) of packed particles, from formulas involving edge density, and the edges from moment-based thresholding are used. An average shape factor is involved in the calculations, obtained for some frames from crude partial segmentation. Measurement results from about 80frames have been analyzed.展开更多
A model for deep bed filtration of a polydisperse suspension with small impurities in a porous medium is considered.Different suspended particles move with the same velocity as the carrier water and get blocked in the...A model for deep bed filtration of a polydisperse suspension with small impurities in a porous medium is considered.Different suspended particles move with the same velocity as the carrier water and get blocked in the pore throats due to the size-exclusion mechanism of particle retention.A solution of the model in the form of a traveling wave is obtained.The global exact solution for a multiparticle filtration with one high concentration and several low concentrations of suspended particles is obtained in an explicit form.The analytic solutions for a bidisperse suspension with large and small particles are constructed.The profiles of the retained small particles change monotony with time.The global asymptotics for the filtration of a polydisperse suspension with small kinetic rates is constructed in the whole filtration zone.展开更多
基金supported by the National Natural Science Foundation of China(No.50474037)The Natural Science Funds(No.KB2006078)in Jiangsu Province of China.
文摘This paper investigated average cluster sizes (ACS) and cluster size distributions (CSD) at different shear rates by Brownian dynamics in non-, bi-, and uni-polar systems with partly charged superfine particles, The investigation indicates that clusters in non- polar systems are the weakest and easiest to be damaged by increasing shear stresses; charged particles play important and different roles: in bi-polar system, it intends to strengthen clusters to some extent provided that the sign-like ions homogeneously arranged; in uni-polar system charged particles cracked the clusters into smaller ones, but the small clusters are strong to stand with larger shear stress. The relationship between ACS and shear rates follows power law with exponents in a range 0.18-0.28, these values are in a good agreement with experiment range but at the lower limit compared with other systems of non-metallic cluster particles.
文摘Fluidization characteristics of silicon particle system are studied by the pressure fluctuation method.The existence of fine particles in the system can improve fluidization. Silicon particles with a wide size distribution,preferably with some fines, behave as Group A particles according to Geldart classification, although the system belongs to Group B actually. The system is also approved to be suitable for organochlorosilane monomer production using a fluidized bed reactor. Experimental data obtained in this work are important for the design and operation of commercial fluidized bed reactors for the production of organochlorosilane monomers.
基金Project(2013EG132088)supported by Special Program for Research Institutes of the Ministry of Science and Technology,ChinaProject(12010402c187)supported by Key Science and Technology Program of Anhui Province,China
文摘In order to deal with the disadvantages of excessive grinding and non-uniformity in finished particle under high-pressure grinding rolls (HPGR) finished grinding system, four aspects were investigated, including evaluating indicators, effects of operating factors, effect of particle uniformity on the flotation and formation mechanism of particle uniformity. Experiment of HPGR finished grinding system, cationic reverse flotation experiment and simulation test of particle bed comminution under the condition of quasi-static were carried out. Theoretical analyses indicated that both of uniformity coefficient and average particle size should be included in the uniformity analysis of the mineral particles. The results show that the effect of circulation fan impeller speed on particle uniformity is the most evident, HPGR working pressure and roll gap are second and HPGR roller speed is the last. Average particle size has a more obvious effect on the grade of flotation concentrate while uniformity coefficient has a more obvious effect on the flotation recovery. Considering the two aspects of grade and recovery, the optimal uniformity coefficient for flotation is 1.1-1.2 and the optimal average particle size for flotation is 50-55 μm. The operating factors which promote the shielding effect and compact effect in the HPGR finished grinding system should be strengthened based on the uniformity of particles.
基金financially supported by the National Natural Science Foundation of China (Grants 51878152 and 51461135001)the Ministry of Science and Technology of China "973 Project" (Grant 2015CB655102)
文摘The pore configuration in porous medium is assumed to be the randomly distributed cube-like particles which can overlap each other in the periodic cubic domain, and the impact of particle characteristics on the percolation property of these cube-like particle packing systems is analyzed.Firstly, by combining the percolation models and finite-size scaling analysis, three numerical parameters(i.e., percolation transition width △L, local percolation threshold ψ_c(L), and correlation length exponent v) for the cube-like particle systems with shape parameter s in[1.0, +∞] are derived successively. Then, based on the relation between the percolation thresholdψ_c in infinite space and the local percolation threshold ψ_c(L), the corresponding ψ_c with s in[1.0, +∞] are further determined. It is shown from the study that the characteristics of cube-like particles have significant influence on the global percolation threshold ψ_c of the particle packing systems. As the parameter s increases from 1.0 to +∞, the percolation threshold ψ_c will go down persistently. When the surface of cube-like particles is cubical and spherical, respectively, the minimum and maximum thresholds ψ_c,min and ψ_c,max are obtained.
文摘The effective medium approximation (EMA) theory is the basis of a capacitance sensor used for concen-tration measurementof a particulate solid flow, its measurementresultis independenton particle size. In existence ofparticle agglomeration or aggradation, however, it is found that the effective permittivity of a gas/solid mixture is de-pendent on particle size. In this paper, a parallel plate, differential capacitance sensor is utilized to investigate theinfluence of particle size on the effective permittivity of the mixture in such a case. Static experiments using threematerials including glass, limestone and quartz particles were carried out in an off-line manner. The volume fractionof particles being tested ranged from20×10-6to 600×10-6, while the particle size was between 3 and 100μm.Experimental results showthat the effective permittivity of a particle-gas mixture with particle agglomeration is largerthan that predicted by EMA and the smaller the particle size, the larger the effective permittivity. The experimentprocess and analysis results are discussed in detail in the paper.
文摘Given image sequences of closely packed particles, the underlying aim is to estimate diameters without explicit segmentation. In a way, this is similar to the task of counting objects without directly counting them. Such calculations may, for example, be useful)Cast estimation of particle size in different application areas. The topic is that of estimating average size (=average diameter) of packed particles, from formulas involving edge density, and the edges from moment-based thresholding are used. An average shape factor is involved in the calculations, obtained for some frames from crude partial segmentation. Measurement results from about 80frames have been analyzed.
文摘A model for deep bed filtration of a polydisperse suspension with small impurities in a porous medium is considered.Different suspended particles move with the same velocity as the carrier water and get blocked in the pore throats due to the size-exclusion mechanism of particle retention.A solution of the model in the form of a traveling wave is obtained.The global exact solution for a multiparticle filtration with one high concentration and several low concentrations of suspended particles is obtained in an explicit form.The analytic solutions for a bidisperse suspension with large and small particles are constructed.The profiles of the retained small particles change monotony with time.The global asymptotics for the filtration of a polydisperse suspension with small kinetic rates is constructed in the whole filtration zone.