The swung gel fibers were hea, ted to 400 ℃ at 0. .5 ,1, 1.5,2,2.5,3and4 ℃ min^-1 of heating rate, respectivel, and soaked.for 1 h ; then heated to 600 ℃ at 3 ℃ min ^-1 of.heating rate amt soaked for 1 h at last ...The swung gel fibers were hea, ted to 400 ℃ at 0. .5 ,1, 1.5,2,2.5,3and4 ℃ min^-1 of heating rate, respectivel, and soaked.for 1 h ; then heated to 600 ℃ at 3 ℃ min ^-1 of.heating rate amt soaked for 1 h at last calcined m 1 000, 1 100, 1 200, 1 300, and 1 400 ℃.for 1 h, respectively.展开更多
The bending strength of carbon?fiber/thermoplastic epoxy composites?(CF/TP-EP Compo.)?had?bi-linear increasewith increase of weight-average molecular weight (Mw) of matrix. The transition in the bending strength appea...The bending strength of carbon?fiber/thermoplastic epoxy composites?(CF/TP-EP Compo.)?had?bi-linear increasewith increase of weight-average molecular weight (Mw) of matrix. The transition in the bending strength appeared at around 55k of Mw (“k”?means 103). SEM observation of fractured surface of CF/TP-EP Compo. showed that the fracture mode changed from interfacial failure to fiber breakage dominated failure. The smooth surface of carbon fibers appeared at lower Mw than 55k while some resin remained on the fibers indicating good adhesion between carbon fiber and matrix at higher Mw than 55k. The interfacial shear strength between carbon fiber and matrix bi-linearly increased with an increase of Mw similarly to the bending strength of the composite, measured by the micro droplet test. The dynamic loss tanδ?of the matrix measured at 2?Hz also showed a bi-linear relationship with respect to Mw having a knee point at Mw = 55k. The connection probability of two cracks introduced on?each side of specimens also confirmed that the interfacial strength between carbon fiber and matrix is the key for the mechanical performance of CF/TP-EP Compo. in bending.展开更多
文摘The swung gel fibers were hea, ted to 400 ℃ at 0. .5 ,1, 1.5,2,2.5,3and4 ℃ min^-1 of heating rate, respectivel, and soaked.for 1 h ; then heated to 600 ℃ at 3 ℃ min ^-1 of.heating rate amt soaked for 1 h at last calcined m 1 000, 1 100, 1 200, 1 300, and 1 400 ℃.for 1 h, respectively.
基金the National Natural Science Foundation of China(Nos.51675414,51805416)the Joint Fund for Aerospace Advanced Manufacturing Technology Research Key Program,China(No.U1937203).
文摘The bending strength of carbon?fiber/thermoplastic epoxy composites?(CF/TP-EP Compo.)?had?bi-linear increasewith increase of weight-average molecular weight (Mw) of matrix. The transition in the bending strength appeared at around 55k of Mw (“k”?means 103). SEM observation of fractured surface of CF/TP-EP Compo. showed that the fracture mode changed from interfacial failure to fiber breakage dominated failure. The smooth surface of carbon fibers appeared at lower Mw than 55k while some resin remained on the fibers indicating good adhesion between carbon fiber and matrix at higher Mw than 55k. The interfacial shear strength between carbon fiber and matrix bi-linearly increased with an increase of Mw similarly to the bending strength of the composite, measured by the micro droplet test. The dynamic loss tanδ?of the matrix measured at 2?Hz also showed a bi-linear relationship with respect to Mw having a knee point at Mw = 55k. The connection probability of two cracks introduced on?each side of specimens also confirmed that the interfacial strength between carbon fiber and matrix is the key for the mechanical performance of CF/TP-EP Compo. in bending.