The H9N2 subtype of avian influenza virus(AIV)is widely prevalent in poultry and wild birds globally,and has become the predominant subtype circulating in poultry in China.The H9N2 AIV can directly or indirectly(by se...The H9N2 subtype of avian influenza virus(AIV)is widely prevalent in poultry and wild birds globally,and has become the predominant subtype circulating in poultry in China.The H9N2 AIV can directly or indirectly(by serving as a"donor virus")infect humans,posing a significant threat to public health.Currently,there is a lack of in-depth research on the prevalence of H9N2 viruses in Shanxi Province,central China.In this study,we isolated 14 H9N2 AIVs from October 2020 to April 2022 in Shanxi Province,and genetic analysis revealed that these viruses belonged to 7 different genotypes.Our study on animals revealed that the H9N2 strains we identified displayed high transmission efficiency among chicken populations,and exhibited diverse replication abilities within these birds.These viruses could replicate efficiently in the lungs of mice,with one strain also demonstrating the capacity to reproduce in organs like the brain and kidneys.At the cellular level,the replication ability of different H9N2 strains was evaluated using plaque formation assays and multi-step growth curve assays,revealing significant differences in the replication and proliferation efficiency of the various H9N2 viruses at the cellular level.The antigenicity analysis suggested that these isolates could be classified into 2 separate antigenic clusters.Our research provides crucial data to help understand the prevalence and biological characteristics of H9N2 AIVs in central China.It also highlights the necessity of enhancing the surveillance of H9N2 AIVs.展开更多
[Objective] The study aimed to investigate the genetic variation characters of entire sequences between two H9N2 subtype avian influenza virus strains and other reference strains.[Method] The entire sequences of 8 gen...[Objective] The study aimed to investigate the genetic variation characters of entire sequences between two H9N2 subtype avian influenza virus strains and other reference strains.[Method] The entire sequences of 8 genes were obtained by using RT-PCR,and these sequences were analyzed with that of six H9N2 subtype avian influenza isolates in homology comparison and genetic evolution relation.[Result] The results showed that the nucleotide sequence of entire gene of the strain shared 91.1%-95.4% homology with other seven reference strains,and PG08 shared the highest homology 91.3% with C/BJ/1/94;ZD06 shared the highest homology 92.3% with D/HK/Y280/97.HA cleavage sites of two H9N2 subtype avian influenza virus isolated strains were PARSSR/GLF,typical of mildly pathogenic avian influenza virus.[Conclusion] Phylogenetic tree for entire gene of eight strains showed that the genetic relationship was the closest between ZD06 and C/Pak/2/99 strains,which belonged to the Eurasian lineage;PG08 shared the highest homology 91.3% with ZD06,it may be the product of gene rearrangements of other sub-lines.展开更多
[ Objective] The study aimed to understand the genetic characters of H9N2 subtype avian influenza viruses isolated in Belling area. [ Method] HA genes of three H9N2 subtype avian influenza viruses A/Chicken/Beijing/xu...[ Objective] The study aimed to understand the genetic characters of H9N2 subtype avian influenza viruses isolated in Belling area. [ Method] HA genes of three H9N2 subtype avian influenza viruses A/Chicken/Beijing/xu/00, A/Chicken/Beijing/bei/00 and A/Chicken/Beijing/ liu/00 were amplified by RT-PCR and then sequenced. [ Result] The results of phylogenetic analysis showed that A/Chicken/Beijing/xu/00, A/ Chicken/Beijing/bei/00 and A/Chicken/Beijing/liu/00 shared the nucleotide homologies of 84.8% ( Dk/HK/Y439/97 ) -98.0% ( Ck/GX17/00 ), 85.1% (Dk/HK/Y439/97) - 99.1% ( Ck/GXl 7/00), 90.7% ( Ck/BJ/3/01 ) - 99.1% (Ck/GX17/00) with the isolates from Hongkong and other are- as of Chinese Mainland respectively. At the same time, the analysis of amino acid indicated that the three isolates belonged to low pathogenic H9N2 isolates of avian origin. The 226^th amino acid of them were L ( Leu), suggesting their high binding affinity to human cells. There were seven glyco- sylation sites in HA protein, five from HA1 and two from HA2. [ Cenclusien] By analysis at molecular level, it could be concluded that A/Chicken/ Beijing/xu/00, A/Chicken/Beijing/bei/00 and A/Chicken/Beijing/liu/00 were low pathogenic H9N2 isolates of avian origin.展开更多
H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are prote...H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are protective and allow mass administration.Of note,these vaccines elicit undetectable H7N9-specific hemagglutination-inhibition(HI)but high IgG antibodies in chickens.However,the molecular basis and protective mechanism underlying this particular antibody immunity remain unclear.Herein,immunization with an NDV_(vec)H7N9 induced low anti-H7N9 HI and virus neutralization titers but high levels of hemagglutinin(HA)-binding IgG antibodies in chickens.Three residues(S150,G151 and S152)in HA of H7N9 virus were identified as the dominant epitopes recognized by the NDV_(vec)H7N9 immune serum.Passively transferred NDV_(vec)H7N9 immune serum conferred complete protection against H7N9 virus infection in chickens.The NDV_(vec)H7N9 immune serum can mediate a potent lysis of HA-expressing and H7N9 virus-infected cells and significantly suppress H7N9 virus infectivity.These activities of the serum were significantly impaired after heat-inactivation or treatment with complement inhibitor,suggesting the engagement of the complement system.Moreover,mutations in the 150-SGS-152 sites in HA resulted in significant reductions in cell lysis and virus neutralization mediated by the NDV_(vec)H7N9 immune serum,indicating the requirement of antibody-antigen binding for complement activity.Therefore,antibodies induced by the NDV_(vec)H7N9 can activate antibody-dependent complement-mediated lysis of H7N9 virus-infected cells and complement-mediated neutralization of H7N9 virus.Our findings unveiled a novel role of the complement in protection conferred by the NDV_(vec)H7N9,highlighting a potential benefit of engaging the complement system in H7N9 vaccine design.展开更多
[Objective] The aim is to develop the piezoelectric immunosensor to detect H9-subtype avian influenza virus(AIV).[Method] The immunosensor chip was constructed by self-assembling mercaptopmpionic acid(MPA) to be m...[Objective] The aim is to develop the piezoelectric immunosensor to detect H9-subtype avian influenza virus(AIV).[Method] The immunosensor chip was constructed by self-assembling mercaptopmpionic acid(MPA) to be monolayer on the silver-coated electrode of quartz crystal and coupling the monoclonal antibody to H9 subtype AIV with N-ethy-N'-(3-dimethyl aminopropyl)carbodiimide hydrochloride(EDC) and N-hydroxysuccinimide(NHS).The immunosensor to detect H9 subtype AIV was established.[Result] The results showed that the immunosensor displayed better specificity to H9 AIV and had no response to H5AIV and NDV when it was used for detection.The sensitivity test indicated the detection sensitivity for the H9 subtype AIV could reach 20-100 EID50.[Conclusion] The research provided a foundation for further research on the immunosensor for detecting AIV and it could be a new approach to detect other related viruses.展开更多
A Objective3 This study was to understand the genetic variation characters of the H9N2 subtype avian influenza virus isolate (A/Chicken/ Hebei/WD/98, abbreviated as WD98) by comparing with other reference strains. I...A Objective3 This study was to understand the genetic variation characters of the H9N2 subtype avian influenza virus isolate (A/Chicken/ Hebei/WD/98, abbreviated as WD98) by comparing with other reference strains. I-Method3 Eight complete genes were amplified by RT-PCR and sequenced. The homology and genetic evolution relationship were analyzed between these sequences and that of the seven reference strains. [Result] The whole genomic sequence of WD98 strain was 91.1% -95.8% homologous to that of seven reference strains tested. This isolate shared the highest homology (95.8%) to D/HK/Y280/97 and the lowest homology (91.1% ) to C/Pak/2/99. The HA cleavage site of the WD98 strain was R-S-S-R G, and the 226th amino acid at receptor-binding site was Gin. [ Condmion] WD98 strain belongs to mildly pathogenic avian in- fluenza virus and may not infect human. The genetic relationship is the closest between A/Chicken/Hebei/wD/98 and A/duck/HongKong/Y280/ 97, both of which belong to the sub-line of A/Chicken/Beijing/1/94 in Eurasian line. And A/Chicken/Hebei/WD/98 and A/Chicken/Beijing/1/94 are genetically distant within the same sub-line.展开更多
H9 s ubtype avian influenza virus(AIV) and infectious bronchitis virus(IBV) are major pathogens circulating in poultry and have resulted in great economic losses due to respiratory disease and reduced egg producti...H9 s ubtype avian influenza virus(AIV) and infectious bronchitis virus(IBV) are major pathogens circulating in poultry and have resulted in great economic losses due to respiratory disease and reduced egg production. As similar symptoms are elicited by the two pathogens, it is difficult for their differential diagnosis. So far, no reverse transcription-polymerase chain reaction(RT-PCR) assay has been found to differentiate between H9 AIV and IBV in one reaction. Therefore, developing a sensitive and specific method is of importance to simultaneously detect and differentiate H9 AIV and IBV. In this study, a duplex RT-PCR(d RT-PCR) was established. Two primer sets target the hemagglutinin(HA) gene of H9 AIV and the nucleocapsid(N) gene of IBV, respectively. Spec ific PCR products were obtained from all tested H9 AIVs and IBVs belonging to the major clades circulating in China, but not from AIVs of other subtypes or other infectious avian viruses. The sensitivity of the d RT-PCR assay corresponding to H9 AIV, IBV and mixture of H9 AIV and IBV were at a concentration of 1×10^1, 1.5×10^1 and 1.5×10^1 50% egg infective doses(EID_(50)) m L^–1, respectively. The concordance rates between the d RT-PCR and virus isolation were 99.1 and 98.2%, respectively, for detection of samples from H9N2 AIV or IBV infected chickens, while the concordance rate was 99.1% for detection of samples from H9N2 AIV and IBV co-infected chickens. Thus, the d RT-PCR assay reported herein is specific and sensitive, and suitable for the differential diagnosis of clinical infections and survei llance of H9 AIVs and IBVs.展开更多
A digital RT-PCR method for rapid detection of H9 subtype influenza was established by comparing the two methods of digital RT-PCR and real-time quantitative RT-PCR. The sensitivity, specificity and reproducibility of...A digital RT-PCR method for rapid detection of H9 subtype influenza was established by comparing the two methods of digital RT-PCR and real-time quantitative RT-PCR. The sensitivity, specificity and reproducibility of the two methods for H9 were determined by gradient dilution using the same pair of primers and probes. Both methods were able to detect 104 times diluted H9 pathogens, while digital RT-PCR could detect H9 in single droplets, and its sensitivity was higher than real-time quantitative RT-PCR. At the same time, the specificities of both methods were very strong, with no amplification reactions for H3N2, H4N2, H6N2. The reproducibility of the two methods were also good. Digital RT-PCR has a higher sensitivity than real-time quantitative RT-PCR and could play an important role in the rapid detection of H9 subtype influenza virus.展开更多
Three isolates of H9N2 Avian Influenza viruses (AIV) were isolated from chickens in Guangxi province. Eight pairs of specific primers were designed and synthesized according to the sequences of H9N2 at GenBank. phylog...Three isolates of H9N2 Avian Influenza viruses (AIV) were isolated from chickens in Guangxi province. Eight pairs of specific primers were designed and synthesized according to the sequences of H9N2 at GenBank. phylogenetic analysis showed a high degree of homology between the Guangxi isolates and isolates from Guangdong and Jiangsu provinces, suggesting that the Guangxi isolates originated from the same source. However, the eight genes of the three isolates from Guangxi were not in the same sublineages in their respective phylogenetic trees, which suggests that they were products of natural reassortment between H9N2 avian influenza viruses from different sublineages. The 9 nucleotides ACAGAGATA which encode amino acids T, G, I were absent between nucleotide 205 and 214 in the open reading frame of the NA gene in the Guangxi isolates. AIV strains that infect human have, in their HA proteins, leucine at position 226. The analysis of deduced amino acid sequence of HA proteins showed that position 226 of these isolates contained glycine instead of leucine, suggesting that these three isolates differ from H9N2 AIV strains isolated from human infections.展开更多
Avian influenza has caused enormous economic losses to poultry industry. To develop kits for rapid diagnosis of avian influenza virus (AIV) H9 subtype, 8-week-old Balb/c mice were administered with pcDNA3.1 ( + )...Avian influenza has caused enormous economic losses to poultry industry. To develop kits for rapid diagnosis of avian influenza virus (AIV) H9 subtype, 8-week-old Balb/c mice were administered with pcDNA3.1 ( + ) carrying hemagglutinin (HA) gene of AIV H9 subtype. After cell fusion, one positive hybridoma cell strain was screened out by hemagglutination inhibition assay ( HI ), and another positive hybddoma call strain was screened out by ELISA. After subcloning 3 times, the two cell strains could still secret antibodies against the HA of AIV H9 subtype. The mono- clonal antibodies did not react with Newcastle disease virus, AIV H5 subtype and duck adenovirus A. Their subtypes were IgG2b with kappa light chain. These two hybridoma cell strains may play an important role in rapid diagnosis and early-warning surveillance of AIV H9 subtype.展开更多
[Objective] The study aims to determine the optimal concentration of trypsin for the proliferation of avian influenza virus (AIV) H9N2 subtype in Madin- Darby canine kidney (MDCK) cells. [Method] Three AIV H9 subt...[Objective] The study aims to determine the optimal concentration of trypsin for the proliferation of avian influenza virus (AIV) H9N2 subtype in Madin- Darby canine kidney (MDCK) cells. [Method] Three AIV H9 subtype isolates were inoculated on MDCK cells respectively. Then, DMEM containing different concentrations of trypsin as maintenance media were added to MDCK monolayer cells. The cytopathic effect (CPE) was observed once every 24 h, and the HA titer of the supematant was measured by HA assay. [Result] When the trypsin concentration was 10 -20 μg/ml in DMEM, the HA titer of virus culture reached 7 log2 (1:128). Almost all cells were cytopathic after 96 h post inoculation with 1:1 000 or 1:10 000 dilution of AIV culture, and the virus titer reached a peak after 72 -96 h. [ Conclusion] The optimal concentration of trypsin is 10 -20 pg/ml for proliferation of AIV H9N2 subtype in MDCK cells.展开更多
[Objective] To screen the best culture media for the proliferation of avian influenza virus (AIV) H9 subtypes in MDCK cells. [Method] The DMEM containing 10% (V/V) newborn calf serum, low-serum containing medium ...[Objective] To screen the best culture media for the proliferation of avian influenza virus (AIV) H9 subtypes in MDCK cells. [Method] The DMEM containing 10% (V/V) newborn calf serum, low-serum containing medium ( MEM-MD-611 ) and serum-free medium (SFE4Mega) were used to culture the MDCK monolayer ceils, which were then inoculated with different dilutions of AIV H9 subtypes, and the 3 kinds of media were al- so used as the maintenance solution to culture the virus. The cytopathic changes were observed at every 24 h, and the HA titers of the culture su- pernatants were also determined. [ Result] After culturing for 72 -96 h, the HA titers of the serum-free media were higher than that of low-serum culture media, while the HA titers were higher in the low-serum media than in the serum containing media. [ Conclusion] The 3 kinds of media can all used for the proliferation of AIV_ but the low-serum culture medium (MEM-MD-611 ) and serum-free medium (SFE4Meaa3 are preferred.展开更多
Avian influenza is a viral contagious disease that affects poultry industry and human health. Vaccination has been considered as a preventive tool in the eradication of AI, but it causes some limitations including tra...Avian influenza is a viral contagious disease that affects poultry industry and human health. Vaccination has been considered as a preventive tool in the eradication of AI, but it causes some limitations including trade embargoes and interfering with serologic surveillance in differentiation between infected and vaccinated animals (DIVA strategy). Several distinct DIVA strategies have been presented to conquer these limitations. In this study, the open reading frame of NS1 gene of a H9N2 subtype of AI virus was amplified by polymerase chain reaction. After extraction and purification of NS1 gene from agarose gel, it was inserted into two different pGEX-4T-1 and pMAL-c2X plasmids and transferred in DH5α strain of Escherichia coli by using electroporation procedure. The E. coli colonies possessing recombinant NS1 gene were screened using PCR, restriction mapping and sequencing analysis. The expressed rNS1 protein was purified using affinity chromatography based on MBP (pMAL- c2X) and GST (pGEX-4T-1). The MBP-NS1 and GST- NS1 proteins on SDS-PAGE had bands with molecular weight of 68 and 52 kDa respectively. Western blotting with MBP-NS1 protein showed positive reaction using antisera obtained from chickens challenged with a H9N2 subtype strain. But, the most sera prepared from H9N2 vaccinated chickens were negative in WB. These findings indicated that the MBP-rNS1 protein of 26 kDa expressed by pMAL-c2X plasmid can be used in a DIVA for differentiation of AI infected and vaccinated chickens.展开更多
Objective:This paper focuses on the multiple detection RT-PCR technology of H5,H7,AND H9 subtype avian influenza viruses and Newcastle disease virus,and points out the specific detection methods and detection procedur...Objective:This paper focuses on the multiple detection RT-PCR technology of H5,H7,AND H9 subtype avian influenza viruses and Newcastle disease virus,and points out the specific detection methods and detection procedures of avian influenza and Newcastle disease virus.Methods:The genes of Newcastle disease virus carrying out the HA gene sequence of H5,H7 and H9 subtype AIV in GenBank were used to establish a strategy for simultaneous detection of three subtypes of avian influenza virus and Newcastle disease virus.Results:The results showed that the program can detect and distinguish H5,H7 and H9 subtype avian influenza viruses and Newcastle disease virus at one time.Conclusion:Multiple RT-PCR detection method has high detection sensitivity and can detect and determine different subtypes of avian influenza virus and Newcastle disease virus quickly and accurately,therefore,it has a crucial role in the detection and control of avian influenza H5,H7 and H9 subtypes and Newcastle disease.展开更多
[ Objective] To determine the HA gene sequences of four H9N2 Avian influenza virus (AIV) strains and carry out comparative analysis so as to understand the difference and variation pattern of each strain from the an...[ Objective] To determine the HA gene sequences of four H9N2 Avian influenza virus (AIV) strains and carry out comparative analysis so as to understand the difference and variation pattern of each strain from the angle of molecular biology and to know the distribution and epidemic law of H9N2 AIV. [Method] One pair of primers was designed referring to HA gene sequences of H9N2 AIV. The HA genes of A/Chicken/Hebei/WD/98 (H9N2; WD98 for short), A/Chicken/Hebei/ZD/04 (H9N2; ZD04 for short)), A/Chicken/Beijing/MY/06 (H9N2; MY06 for short) ), and A/Chicken/Beijing/PG/08 (H9N2; PG08 for short)) were amplified, cloned and sequenced. Then the HA gene sequences of these strains were compared with that of 10 H9N2 AIV stains in GenBank. [Result] The ORF of HA genes of the four strains was 1 683 bp in size, encoding 516 amino acids. The HA gene sequences of the four strains, WD98, MY06, PG08, and ZD04, were 82.6% -95.1%, 83.0% -99.0%, 82.7% -95.5%, and 81.3% -95.7% homologous to that of the 10 H9N2 AIV stains, respectively. And the homology of amino acid was respectively 86.6% -96.3%, 86.6% -97.9%, 87.0% -97.1%, and 86.9% -97.3%. [ Conclusion] The HA gene has greatly high homology among different strains.展开更多
[ Objective] The study aimed to lay a foundation for the further studies on function mechanism of NS1 protein in the interspecies transmission of waterfowl influenza virus. [Method] Using the serologic assay and the s...[ Objective] The study aimed to lay a foundation for the further studies on function mechanism of NS1 protein in the interspecies transmission of waterfowl influenza virus. [Method] Using the serologic assay and the specific RT-PCR method, some strains of H9 subtype waterfowl influenza virus were isolated from the 12 to 20 day-old muscovy duck flocks without any clinical symptoms in different areas of Guangdong Province. Four of these strains, including A/duck/ZQ/303/2007(H9N2) (A3 for short), A/Duck/FJ/301/2007 (H9N2) (C1 for short), A/Duck/NH/306/2007(H9N2) ( D6 for short), A/duck/SS/402/2007(H9N2) ( E2 for short), and a strain named A/duck/ZC/2007(H9N2) (L1 for short) from a muscovy duck died of avian influenza virus (AIV), were used for NSl gene cloning and sequencing. Subsequently, the obtained NSl gene sequences were compared with other NS1 sequences registered in GenBank, and the phylogenetic analysis was also conducted. [Result] When compared with the H9N2 AIV NS1 sequences in GenBank, the NSl genes of the four AIV strains A3, C1, 136 and E2 displayed homologies ranging from 99% to 100% at nucleotide level, and 95% to 100% at amino acid level; while the NSl gene of L1 strain displayed homology ranging from 94% to 97% at nucleotide level, and 93% to 98% at amino acid level. The phylogenetic tree demonstrated that A3, C1, D6 and E2 were highly resemblant, and L1 was closest to AY66473 (chicken, 2003). By comparison with the NS1 gene sequences of L1, AF523514 (duck), AY664743 (chicken) and EF155262.1 (quail) using DNAstar, A3, C1, D6 and E.2 presented nucleotide variations at site 21 ( R→Q), 70, 71 ( KE→EG), 86 ( A→S), 124 (V→M) and 225 ( S→N), and amino acid variations at site 21,70, 71 and 86 in dsRNA- dependent protein kinase (PKR) binding domain of NSl gene, which induced the evident variations of antigenic determinant and surface proba- bility plot of NS1 protein. [ Conclusion] This study suggested that the amino acid sequence variation in PKR binding domain of NS1 protein had something to do with the virus pathogenicity.展开更多
Objective To investigate the pathogenesis and immunogenicity of H9N2 influenza virus A/Guangzhou/333/99 (a reassortant of G1 and G9 viruses isolated from a female patient in 1999) in a mouse model of infection.Metho...Objective To investigate the pathogenesis and immunogenicity of H9N2 influenza virus A/Guangzhou/333/99 (a reassortant of G1 and G9 viruses isolated from a female patient in 1999) in a mouse model of infection.Methods Mice were infected with increasing virus titers.Viral load in the lungs and trachea was determined by EID50 assay.Pulmonary histopathology was assessed by hematoxylin‐eosin staining.Anti‐HI antibody titers and T‐cell responses to viral HA were determined by ELISPOT and confirmed by flow cytometry.Results Mice presented a mild syndrome after intranasal infection with A/Guangzhou/333/99 (H9N2) influenza virus.Virus was detected in the trachea and lungs of mice harvested on days 3,6,and 9 post‐infection.A T‐cell response to viral HA was detected on day 6 and H9 HA‐specific CD 4+ T‐cells predominated.Seroconversion was detected after 14 days and antibody persisted for at least 28 weeks.Conclusion Our results suggest that H9N2 (A/Guangzhou/333/99) can replicate in the murine respiratory tract without prior adaptation,and both humoral and cell‐mediated immunity play an important role in the immune response.展开更多
To investigate the susceptibility of Chukars to duck avian influenza virus H9N2 and explore their role in interspecies transmission of influenza viruses.Chukars were inoculated with duck avian influenza viruses H9N2.
Low pathogenic Avian Influenza (AI) virus has the ability to evolve to high pathogenic viruses resulting in significant economic losses in the poultry sector. This study aims at assessing the impact of H9N2 viral pass...Low pathogenic Avian Influenza (AI) virus has the ability to evolve to high pathogenic viruses resulting in significant economic losses in the poultry sector. This study aims at assessing the impact of H9N2 viral passaging in broilers and its relatedness to pathogenicity and amino acid (a.a) sequences of the hemagglutinin (HA) cleavage site and neuraminidase (NA) stalk. The original H9N2 AI virus (P0) was used to challenge ten-21 days old broilers. Individual recovery of H9N2 virus from homogenates of trachea, lungs and airsacs was attempted in 9 days old chicken embryos, as a conclusion of the first passage (P1). Tracheal isolates of H9N2 were passaged for a second (P2) and a third (P3) time in broilers, followed by a similar embryonic recovery procedure. The a.a. sequence of a part of HA1 cleavage site and Neuraminidase stalk were compared among the differently passaged viruses;an assessement of the relatedness of the determined a.a. sequences to the pathogenicity in broilers, based on frequency of mortality, morbidity signs, gross and microscopic lesions at 3 days post challenge with the P1, P2, and P3-H9N2, is concluded. An increase in certain morbidity signs and specific lesions was observed in P2- and P3-H9N2 challenged broilers compared to birds challenged with P1-H9N2. A conserved R-S-S-R amino acid sequence at the HA1 cleavage site was observed in the differently passaged H9N2, associated with a variability in the NA stalk-a.a sequences. The passaging of the low pathogenic H9N2 virus in broilers leads to a trend of increase in pathogenicity, manifested in higher frequency of morbidity signs, and of specific gross and microscopic lesions of the examined organs. This passaging was associated with a conserved a.a. sequence of the hemaglutinin cleavage site and a variability in the sequence of the neuraminidase stalk. A detailed study of the potential of the detected variability in the neuraminidase stalk of H9N2 in induction of a higher pathogenicity in broilers will be the subject of future investigations.展开更多
[ Objective ] The paper was to prevent the occurrence of broiler avian influenza virus HS subtype Re-8 strain effectively in the breeding process of broilers. [Method] The maternal antibodies of broilers in Beijing Ba...[ Objective ] The paper was to prevent the occurrence of broiler avian influenza virus HS subtype Re-8 strain effectively in the breeding process of broilers. [Method] The maternal antibodies of broilers in Beijing Baochen Hongwang farm were monitored. According to the disappearance law of maternal antibody, the optimal immune time of broiler avian influenza virus H5 subtype Re-8 strain was determined. [ Result] The maternal antibody level of 2-day-old broilers was relatively high, concentrated at 6 log2 -9 log2, and the antibody positive rate was 100%. The maternal antibody level of 8-day-old broilers concentrated at 4 log2 -6 log2, and the antibody positive rate was 100%. The maternal antibody level of 17-day-old broilers concentrated at 0 log2 -3 log2 , and the antibody positive rate was 0. The average maternal antibody level of 24 - 37 days old broilers was 〈 1 log2, and the antibody positive rate was 0. [ Conclusion ] Although the av- erage maternal antibody level of 8-day-old broilers was higher than 5 log2 , 20% of chickens was 4 log2, and maternal antibody could not protect the flock completely. Therefore, the best primary immunization day age of chicks against avian influenza virus was 8 - 10 days of age.展开更多
基金Fundamental Research Program of Shanxi Province,China(202103021224156)National Natural Science Foundation of China(32202788)+5 种基金Special Research Fund of Shanxi Agricultural University for High-level Talents,China(2021XG004)Science and Technology Innovation Program of Shanxi Agricultural University,China(2021BQ78)special fund for Science and Technology Innovation Teams of Shanxi Province,China(202304051001041)?Shanxi Province Excellent Doctoral Work Award-Scientific Research Project,China(SXBYKY2021005,SXBYKY2021063,SXBYKY2022014)the Fund for Shanxi“1331 Project”,China(20211331-13)earmarked fund for Modern Agro-industry Technology Research System of Shanxi Province,China.
文摘The H9N2 subtype of avian influenza virus(AIV)is widely prevalent in poultry and wild birds globally,and has become the predominant subtype circulating in poultry in China.The H9N2 AIV can directly or indirectly(by serving as a"donor virus")infect humans,posing a significant threat to public health.Currently,there is a lack of in-depth research on the prevalence of H9N2 viruses in Shanxi Province,central China.In this study,we isolated 14 H9N2 AIVs from October 2020 to April 2022 in Shanxi Province,and genetic analysis revealed that these viruses belonged to 7 different genotypes.Our study on animals revealed that the H9N2 strains we identified displayed high transmission efficiency among chicken populations,and exhibited diverse replication abilities within these birds.These viruses could replicate efficiently in the lungs of mice,with one strain also demonstrating the capacity to reproduce in organs like the brain and kidneys.At the cellular level,the replication ability of different H9N2 strains was evaluated using plaque formation assays and multi-step growth curve assays,revealing significant differences in the replication and proliferation efficiency of the various H9N2 viruses at the cellular level.The antigenicity analysis suggested that these isolates could be classified into 2 separate antigenic clusters.Our research provides crucial data to help understand the prevalence and biological characteristics of H9N2 AIVs in central China.It also highlights the necessity of enhancing the surveillance of H9N2 AIVs.
基金Supported by a Sub-project of 973 Program of China(2005CB523001)~~
文摘[Objective] The study aimed to investigate the genetic variation characters of entire sequences between two H9N2 subtype avian influenza virus strains and other reference strains.[Method] The entire sequences of 8 genes were obtained by using RT-PCR,and these sequences were analyzed with that of six H9N2 subtype avian influenza isolates in homology comparison and genetic evolution relation.[Result] The results showed that the nucleotide sequence of entire gene of the strain shared 91.1%-95.4% homology with other seven reference strains,and PG08 shared the highest homology 91.3% with C/BJ/1/94;ZD06 shared the highest homology 92.3% with D/HK/Y280/97.HA cleavage sites of two H9N2 subtype avian influenza virus isolated strains were PARSSR/GLF,typical of mildly pathogenic avian influenza virus.[Conclusion] Phylogenetic tree for entire gene of eight strains showed that the genetic relationship was the closest between ZD06 and C/Pak/2/99 strains,which belonged to the Eurasian lineage;PG08 shared the highest homology 91.3% with ZD06,it may be the product of gene rearrangements of other sub-lines.
文摘[ Objective] The study aimed to understand the genetic characters of H9N2 subtype avian influenza viruses isolated in Belling area. [ Method] HA genes of three H9N2 subtype avian influenza viruses A/Chicken/Beijing/xu/00, A/Chicken/Beijing/bei/00 and A/Chicken/Beijing/ liu/00 were amplified by RT-PCR and then sequenced. [ Result] The results of phylogenetic analysis showed that A/Chicken/Beijing/xu/00, A/ Chicken/Beijing/bei/00 and A/Chicken/Beijing/liu/00 shared the nucleotide homologies of 84.8% ( Dk/HK/Y439/97 ) -98.0% ( Ck/GX17/00 ), 85.1% (Dk/HK/Y439/97) - 99.1% ( Ck/GXl 7/00), 90.7% ( Ck/BJ/3/01 ) - 99.1% (Ck/GX17/00) with the isolates from Hongkong and other are- as of Chinese Mainland respectively. At the same time, the analysis of amino acid indicated that the three isolates belonged to low pathogenic H9N2 isolates of avian origin. The 226^th amino acid of them were L ( Leu), suggesting their high binding affinity to human cells. There were seven glyco- sylation sites in HA protein, five from HA1 and two from HA2. [ Cenclusien] By analysis at molecular level, it could be concluded that A/Chicken/ Beijing/xu/00, A/Chicken/Beijing/bei/00 and A/Chicken/Beijing/liu/00 were low pathogenic H9N2 isolates of avian origin.
基金supported by the earmarked fund for China Agriculture Research System(CARS-40)the Key Research and Development Project of Yangzhou(Modern Agriculture),China(YZ2022052)the‘‘High-end Talent Support Program’’of Yangzhou University,China。
文摘H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are protective and allow mass administration.Of note,these vaccines elicit undetectable H7N9-specific hemagglutination-inhibition(HI)but high IgG antibodies in chickens.However,the molecular basis and protective mechanism underlying this particular antibody immunity remain unclear.Herein,immunization with an NDV_(vec)H7N9 induced low anti-H7N9 HI and virus neutralization titers but high levels of hemagglutinin(HA)-binding IgG antibodies in chickens.Three residues(S150,G151 and S152)in HA of H7N9 virus were identified as the dominant epitopes recognized by the NDV_(vec)H7N9 immune serum.Passively transferred NDV_(vec)H7N9 immune serum conferred complete protection against H7N9 virus infection in chickens.The NDV_(vec)H7N9 immune serum can mediate a potent lysis of HA-expressing and H7N9 virus-infected cells and significantly suppress H7N9 virus infectivity.These activities of the serum were significantly impaired after heat-inactivation or treatment with complement inhibitor,suggesting the engagement of the complement system.Moreover,mutations in the 150-SGS-152 sites in HA resulted in significant reductions in cell lysis and virus neutralization mediated by the NDV_(vec)H7N9 immune serum,indicating the requirement of antibody-antigen binding for complement activity.Therefore,antibodies induced by the NDV_(vec)H7N9 can activate antibody-dependent complement-mediated lysis of H7N9 virus-infected cells and complement-mediated neutralization of H7N9 virus.Our findings unveiled a novel role of the complement in protection conferred by the NDV_(vec)H7N9,highlighting a potential benefit of engaging the complement system in H7N9 vaccine design.
基金Supported by the Supporting Program of the"Eleventh Five-year Plan"for Sci&Tech Research of China(2006BAK20A29)Strategical Project for Science and Technology of Guangdong Province(2004A2090102)~~
文摘[Objective] The aim is to develop the piezoelectric immunosensor to detect H9-subtype avian influenza virus(AIV).[Method] The immunosensor chip was constructed by self-assembling mercaptopmpionic acid(MPA) to be monolayer on the silver-coated electrode of quartz crystal and coupling the monoclonal antibody to H9 subtype AIV with N-ethy-N'-(3-dimethyl aminopropyl)carbodiimide hydrochloride(EDC) and N-hydroxysuccinimide(NHS).The immunosensor to detect H9 subtype AIV was established.[Result] The results showed that the immunosensor displayed better specificity to H9 AIV and had no response to H5AIV and NDV when it was used for detection.The sensitivity test indicated the detection sensitivity for the H9 subtype AIV could reach 20-100 EID50.[Conclusion] The research provided a foundation for further research on the immunosensor for detecting AIV and it could be a new approach to detect other related viruses.
基金supported by subproject of National Program on Key Basic Research Project (973 Program )(2005CB523001)
文摘A Objective3 This study was to understand the genetic variation characters of the H9N2 subtype avian influenza virus isolate (A/Chicken/ Hebei/WD/98, abbreviated as WD98) by comparing with other reference strains. I-Method3 Eight complete genes were amplified by RT-PCR and sequenced. The homology and genetic evolution relationship were analyzed between these sequences and that of the seven reference strains. [Result] The whole genomic sequence of WD98 strain was 91.1% -95.8% homologous to that of seven reference strains tested. This isolate shared the highest homology (95.8%) to D/HK/Y280/97 and the lowest homology (91.1% ) to C/Pak/2/99. The HA cleavage site of the WD98 strain was R-S-S-R G, and the 226th amino acid at receptor-binding site was Gin. [ Condmion] WD98 strain belongs to mildly pathogenic avian in- fluenza virus and may not infect human. The genetic relationship is the closest between A/Chicken/Hebei/wD/98 and A/duck/HongKong/Y280/ 97, both of which belong to the sub-line of A/Chicken/Beijing/1/94 in Eurasian line. And A/Chicken/Hebei/WD/98 and A/Chicken/Beijing/1/94 are genetically distant within the same sub-line.
基金supported by the National High-Tech R&D Program of China(2012AA101303)
文摘H9 s ubtype avian influenza virus(AIV) and infectious bronchitis virus(IBV) are major pathogens circulating in poultry and have resulted in great economic losses due to respiratory disease and reduced egg production. As similar symptoms are elicited by the two pathogens, it is difficult for their differential diagnosis. So far, no reverse transcription-polymerase chain reaction(RT-PCR) assay has been found to differentiate between H9 AIV and IBV in one reaction. Therefore, developing a sensitive and specific method is of importance to simultaneously detect and differentiate H9 AIV and IBV. In this study, a duplex RT-PCR(d RT-PCR) was established. Two primer sets target the hemagglutinin(HA) gene of H9 AIV and the nucleocapsid(N) gene of IBV, respectively. Spec ific PCR products were obtained from all tested H9 AIVs and IBVs belonging to the major clades circulating in China, but not from AIVs of other subtypes or other infectious avian viruses. The sensitivity of the d RT-PCR assay corresponding to H9 AIV, IBV and mixture of H9 AIV and IBV were at a concentration of 1×10^1, 1.5×10^1 and 1.5×10^1 50% egg infective doses(EID_(50)) m L^–1, respectively. The concordance rates between the d RT-PCR and virus isolation were 99.1 and 98.2%, respectively, for detection of samples from H9N2 AIV or IBV infected chickens, while the concordance rate was 99.1% for detection of samples from H9N2 AIV and IBV co-infected chickens. Thus, the d RT-PCR assay reported herein is specific and sensitive, and suitable for the differential diagnosis of clinical infections and survei llance of H9 AIVs and IBVs.
文摘A digital RT-PCR method for rapid detection of H9 subtype influenza was established by comparing the two methods of digital RT-PCR and real-time quantitative RT-PCR. The sensitivity, specificity and reproducibility of the two methods for H9 were determined by gradient dilution using the same pair of primers and probes. Both methods were able to detect 104 times diluted H9 pathogens, while digital RT-PCR could detect H9 in single droplets, and its sensitivity was higher than real-time quantitative RT-PCR. At the same time, the specificities of both methods were very strong, with no amplification reactions for H3N2, H4N2, H6N2. The reproducibility of the two methods were also good. Digital RT-PCR has a higher sensitivity than real-time quantitative RT-PCR and could play an important role in the rapid detection of H9 subtype influenza virus.
基金supported by National Bai Qian Wan Talents Engineering Foudation (Grant No. 9452006-03 )Guangxi Science Technology Bureau (GKG- 0719004-3A)Guangxi Husbandry and Fisheries Bureau.
文摘Three isolates of H9N2 Avian Influenza viruses (AIV) were isolated from chickens in Guangxi province. Eight pairs of specific primers were designed and synthesized according to the sequences of H9N2 at GenBank. phylogenetic analysis showed a high degree of homology between the Guangxi isolates and isolates from Guangdong and Jiangsu provinces, suggesting that the Guangxi isolates originated from the same source. However, the eight genes of the three isolates from Guangxi were not in the same sublineages in their respective phylogenetic trees, which suggests that they were products of natural reassortment between H9N2 avian influenza viruses from different sublineages. The 9 nucleotides ACAGAGATA which encode amino acids T, G, I were absent between nucleotide 205 and 214 in the open reading frame of the NA gene in the Guangxi isolates. AIV strains that infect human have, in their HA proteins, leucine at position 226. The analysis of deduced amino acid sequence of HA proteins showed that position 226 of these isolates contained glycine instead of leucine, suggesting that these three isolates differ from H9N2 AIV strains isolated from human infections.
基金funded by the National Key Technology R&D Program(2006BAK20A29)the Shenzhen Entry-Exit Inspection and Quarantine Project(sz2008102)
文摘Avian influenza has caused enormous economic losses to poultry industry. To develop kits for rapid diagnosis of avian influenza virus (AIV) H9 subtype, 8-week-old Balb/c mice were administered with pcDNA3.1 ( + ) carrying hemagglutinin (HA) gene of AIV H9 subtype. After cell fusion, one positive hybridoma cell strain was screened out by hemagglutination inhibition assay ( HI ), and another positive hybddoma call strain was screened out by ELISA. After subcloning 3 times, the two cell strains could still secret antibodies against the HA of AIV H9 subtype. The mono- clonal antibodies did not react with Newcastle disease virus, AIV H5 subtype and duck adenovirus A. Their subtypes were IgG2b with kappa light chain. These two hybridoma cell strains may play an important role in rapid diagnosis and early-warning surveillance of AIV H9 subtype.
基金funded by the Beijing Academy of Agriculture and Forestry Sciences (2010A007)
文摘[Objective] The study aims to determine the optimal concentration of trypsin for the proliferation of avian influenza virus (AIV) H9N2 subtype in Madin- Darby canine kidney (MDCK) cells. [Method] Three AIV H9 subtype isolates were inoculated on MDCK cells respectively. Then, DMEM containing different concentrations of trypsin as maintenance media were added to MDCK monolayer cells. The cytopathic effect (CPE) was observed once every 24 h, and the HA titer of the supematant was measured by HA assay. [Result] When the trypsin concentration was 10 -20 μg/ml in DMEM, the HA titer of virus culture reached 7 log2 (1:128). Almost all cells were cytopathic after 96 h post inoculation with 1:1 000 or 1:10 000 dilution of AIV culture, and the virus titer reached a peak after 72 -96 h. [ Conclusion] The optimal concentration of trypsin is 10 -20 pg/ml for proliferation of AIV H9N2 subtype in MDCK cells.
基金funded by the General Project of Beijing Academy of Agricultural and Forestry Sciences ( 2010A007)
文摘[Objective] To screen the best culture media for the proliferation of avian influenza virus (AIV) H9 subtypes in MDCK cells. [Method] The DMEM containing 10% (V/V) newborn calf serum, low-serum containing medium ( MEM-MD-611 ) and serum-free medium (SFE4Mega) were used to culture the MDCK monolayer ceils, which were then inoculated with different dilutions of AIV H9 subtypes, and the 3 kinds of media were al- so used as the maintenance solution to culture the virus. The cytopathic changes were observed at every 24 h, and the HA titers of the culture su- pernatants were also determined. [ Result] After culturing for 72 -96 h, the HA titers of the serum-free media were higher than that of low-serum culture media, while the HA titers were higher in the low-serum media than in the serum containing media. [ Conclusion] The 3 kinds of media can all used for the proliferation of AIV_ but the low-serum culture medium (MEM-MD-611 ) and serum-free medium (SFE4Meaa3 are preferred.
文摘Avian influenza is a viral contagious disease that affects poultry industry and human health. Vaccination has been considered as a preventive tool in the eradication of AI, but it causes some limitations including trade embargoes and interfering with serologic surveillance in differentiation between infected and vaccinated animals (DIVA strategy). Several distinct DIVA strategies have been presented to conquer these limitations. In this study, the open reading frame of NS1 gene of a H9N2 subtype of AI virus was amplified by polymerase chain reaction. After extraction and purification of NS1 gene from agarose gel, it was inserted into two different pGEX-4T-1 and pMAL-c2X plasmids and transferred in DH5α strain of Escherichia coli by using electroporation procedure. The E. coli colonies possessing recombinant NS1 gene were screened using PCR, restriction mapping and sequencing analysis. The expressed rNS1 protein was purified using affinity chromatography based on MBP (pMAL- c2X) and GST (pGEX-4T-1). The MBP-NS1 and GST- NS1 proteins on SDS-PAGE had bands with molecular weight of 68 and 52 kDa respectively. Western blotting with MBP-NS1 protein showed positive reaction using antisera obtained from chickens challenged with a H9N2 subtype strain. But, the most sera prepared from H9N2 vaccinated chickens were negative in WB. These findings indicated that the MBP-rNS1 protein of 26 kDa expressed by pMAL-c2X plasmid can be used in a DIVA for differentiation of AI infected and vaccinated chickens.
文摘Objective:This paper focuses on the multiple detection RT-PCR technology of H5,H7,AND H9 subtype avian influenza viruses and Newcastle disease virus,and points out the specific detection methods and detection procedures of avian influenza and Newcastle disease virus.Methods:The genes of Newcastle disease virus carrying out the HA gene sequence of H5,H7 and H9 subtype AIV in GenBank were used to establish a strategy for simultaneous detection of three subtypes of avian influenza virus and Newcastle disease virus.Results:The results showed that the program can detect and distinguish H5,H7 and H9 subtype avian influenza viruses and Newcastle disease virus at one time.Conclusion:Multiple RT-PCR detection method has high detection sensitivity and can detect and determine different subtypes of avian influenza virus and Newcastle disease virus quickly and accurately,therefore,it has a crucial role in the detection and control of avian influenza H5,H7 and H9 subtypes and Newcastle disease.
基金Supported by subproject of Major State Basic Research Development Program of China (2005CB523001)~~
文摘[ Objective] To determine the HA gene sequences of four H9N2 Avian influenza virus (AIV) strains and carry out comparative analysis so as to understand the difference and variation pattern of each strain from the angle of molecular biology and to know the distribution and epidemic law of H9N2 AIV. [Method] One pair of primers was designed referring to HA gene sequences of H9N2 AIV. The HA genes of A/Chicken/Hebei/WD/98 (H9N2; WD98 for short), A/Chicken/Hebei/ZD/04 (H9N2; ZD04 for short)), A/Chicken/Beijing/MY/06 (H9N2; MY06 for short) ), and A/Chicken/Beijing/PG/08 (H9N2; PG08 for short)) were amplified, cloned and sequenced. Then the HA gene sequences of these strains were compared with that of 10 H9N2 AIV stains in GenBank. [Result] The ORF of HA genes of the four strains was 1 683 bp in size, encoding 516 amino acids. The HA gene sequences of the four strains, WD98, MY06, PG08, and ZD04, were 82.6% -95.1%, 83.0% -99.0%, 82.7% -95.5%, and 81.3% -95.7% homologous to that of the 10 H9N2 AIV stains, respectively. And the homology of amino acid was respectively 86.6% -96.3%, 86.6% -97.9%, 87.0% -97.1%, and 86.9% -97.3%. [ Conclusion] The HA gene has greatly high homology among different strains.
基金Supported by Key Specific Program for Science and Technology of Guangdong Province (2008B020700003 A2007A020400006)~~
文摘[ Objective] The study aimed to lay a foundation for the further studies on function mechanism of NS1 protein in the interspecies transmission of waterfowl influenza virus. [Method] Using the serologic assay and the specific RT-PCR method, some strains of H9 subtype waterfowl influenza virus were isolated from the 12 to 20 day-old muscovy duck flocks without any clinical symptoms in different areas of Guangdong Province. Four of these strains, including A/duck/ZQ/303/2007(H9N2) (A3 for short), A/Duck/FJ/301/2007 (H9N2) (C1 for short), A/Duck/NH/306/2007(H9N2) ( D6 for short), A/duck/SS/402/2007(H9N2) ( E2 for short), and a strain named A/duck/ZC/2007(H9N2) (L1 for short) from a muscovy duck died of avian influenza virus (AIV), were used for NSl gene cloning and sequencing. Subsequently, the obtained NSl gene sequences were compared with other NS1 sequences registered in GenBank, and the phylogenetic analysis was also conducted. [Result] When compared with the H9N2 AIV NS1 sequences in GenBank, the NSl genes of the four AIV strains A3, C1, 136 and E2 displayed homologies ranging from 99% to 100% at nucleotide level, and 95% to 100% at amino acid level; while the NSl gene of L1 strain displayed homology ranging from 94% to 97% at nucleotide level, and 93% to 98% at amino acid level. The phylogenetic tree demonstrated that A3, C1, D6 and E2 were highly resemblant, and L1 was closest to AY66473 (chicken, 2003). By comparison with the NS1 gene sequences of L1, AF523514 (duck), AY664743 (chicken) and EF155262.1 (quail) using DNAstar, A3, C1, D6 and E.2 presented nucleotide variations at site 21 ( R→Q), 70, 71 ( KE→EG), 86 ( A→S), 124 (V→M) and 225 ( S→N), and amino acid variations at site 21,70, 71 and 86 in dsRNA- dependent protein kinase (PKR) binding domain of NSl gene, which induced the evident variations of antigenic determinant and surface proba- bility plot of NS1 protein. [ Conclusion] This study suggested that the amino acid sequence variation in PKR binding domain of NS1 protein had something to do with the virus pathogenicity.
基金supported by the National Basic Research Program of China (973 program: 2005CB523006)
文摘Objective To investigate the pathogenesis and immunogenicity of H9N2 influenza virus A/Guangzhou/333/99 (a reassortant of G1 and G9 viruses isolated from a female patient in 1999) in a mouse model of infection.Methods Mice were infected with increasing virus titers.Viral load in the lungs and trachea was determined by EID50 assay.Pulmonary histopathology was assessed by hematoxylin‐eosin staining.Anti‐HI antibody titers and T‐cell responses to viral HA were determined by ELISPOT and confirmed by flow cytometry.Results Mice presented a mild syndrome after intranasal infection with A/Guangzhou/333/99 (H9N2) influenza virus.Virus was detected in the trachea and lungs of mice harvested on days 3,6,and 9 post‐infection.A T‐cell response to viral HA was detected on day 6 and H9 HA‐specific CD 4+ T‐cells predominated.Seroconversion was detected after 14 days and antibody persisted for at least 28 weeks.Conclusion Our results suggest that H9N2 (A/Guangzhou/333/99) can replicate in the murine respiratory tract without prior adaptation,and both humoral and cell‐mediated immunity play an important role in the immune response.
基金the National Natural Science Foundation of China[31260033,31660041]
文摘To investigate the susceptibility of Chukars to duck avian influenza virus H9N2 and explore their role in interspecies transmission of influenza viruses.Chukars were inoculated with duck avian influenza viruses H9N2.
文摘Low pathogenic Avian Influenza (AI) virus has the ability to evolve to high pathogenic viruses resulting in significant economic losses in the poultry sector. This study aims at assessing the impact of H9N2 viral passaging in broilers and its relatedness to pathogenicity and amino acid (a.a) sequences of the hemagglutinin (HA) cleavage site and neuraminidase (NA) stalk. The original H9N2 AI virus (P0) was used to challenge ten-21 days old broilers. Individual recovery of H9N2 virus from homogenates of trachea, lungs and airsacs was attempted in 9 days old chicken embryos, as a conclusion of the first passage (P1). Tracheal isolates of H9N2 were passaged for a second (P2) and a third (P3) time in broilers, followed by a similar embryonic recovery procedure. The a.a. sequence of a part of HA1 cleavage site and Neuraminidase stalk were compared among the differently passaged viruses;an assessement of the relatedness of the determined a.a. sequences to the pathogenicity in broilers, based on frequency of mortality, morbidity signs, gross and microscopic lesions at 3 days post challenge with the P1, P2, and P3-H9N2, is concluded. An increase in certain morbidity signs and specific lesions was observed in P2- and P3-H9N2 challenged broilers compared to birds challenged with P1-H9N2. A conserved R-S-S-R amino acid sequence at the HA1 cleavage site was observed in the differently passaged H9N2, associated with a variability in the NA stalk-a.a sequences. The passaging of the low pathogenic H9N2 virus in broilers leads to a trend of increase in pathogenicity, manifested in higher frequency of morbidity signs, and of specific gross and microscopic lesions of the examined organs. This passaging was associated with a conserved a.a. sequence of the hemaglutinin cleavage site and a variability in the sequence of the neuraminidase stalk. A detailed study of the potential of the detected variability in the neuraminidase stalk of H9N2 in induction of a higher pathogenicity in broilers will be the subject of future investigations.
文摘[ Objective ] The paper was to prevent the occurrence of broiler avian influenza virus HS subtype Re-8 strain effectively in the breeding process of broilers. [Method] The maternal antibodies of broilers in Beijing Baochen Hongwang farm were monitored. According to the disappearance law of maternal antibody, the optimal immune time of broiler avian influenza virus H5 subtype Re-8 strain was determined. [ Result] The maternal antibody level of 2-day-old broilers was relatively high, concentrated at 6 log2 -9 log2, and the antibody positive rate was 100%. The maternal antibody level of 8-day-old broilers concentrated at 4 log2 -6 log2, and the antibody positive rate was 100%. The maternal antibody level of 17-day-old broilers concentrated at 0 log2 -3 log2 , and the antibody positive rate was 0. The average maternal antibody level of 24 - 37 days old broilers was 〈 1 log2, and the antibody positive rate was 0. [ Conclusion ] Although the av- erage maternal antibody level of 8-day-old broilers was higher than 5 log2 , 20% of chickens was 4 log2, and maternal antibody could not protect the flock completely. Therefore, the best primary immunization day age of chicks against avian influenza virus was 8 - 10 days of age.