The stamping-out strategy has been used to control highly pathogenic avian influenza viruses in many countries,driven by the belief that vaccination would not be successful against such viruses and fears that avian in...The stamping-out strategy has been used to control highly pathogenic avian influenza viruses in many countries,driven by the belief that vaccination would not be successful against such viruses and fears that avian influenza virus in vaccinated birds would evolve more rapidly and pose a greater risk to humans.In this review,we summarize the successes in controlling highly pathogenic avian influenza in China and make suggestions regarding the requirements for vaccine selection and effectiveness.In addition,we present evidence that vaccination of poultry not only eliminates human infection with avian influenza virus,but also significantly reduces and abolishes some harmful characteristics of avian influenza virus.展开更多
The H9N2 subtype of avian influenza virus(AIV)is widely prevalent in poultry and wild birds globally,and has become the predominant subtype circulating in poultry in China.The H9N2 AIV can directly or indirectly(by se...The H9N2 subtype of avian influenza virus(AIV)is widely prevalent in poultry and wild birds globally,and has become the predominant subtype circulating in poultry in China.The H9N2 AIV can directly or indirectly(by serving as a"donor virus")infect humans,posing a significant threat to public health.Currently,there is a lack of in-depth research on the prevalence of H9N2 viruses in Shanxi Province,central China.In this study,we isolated 14 H9N2 AIVs from October 2020 to April 2022 in Shanxi Province,and genetic analysis revealed that these viruses belonged to 7 different genotypes.Our study on animals revealed that the H9N2 strains we identified displayed high transmission efficiency among chicken populations,and exhibited diverse replication abilities within these birds.These viruses could replicate efficiently in the lungs of mice,with one strain also demonstrating the capacity to reproduce in organs like the brain and kidneys.At the cellular level,the replication ability of different H9N2 strains was evaluated using plaque formation assays and multi-step growth curve assays,revealing significant differences in the replication and proliferation efficiency of the various H9N2 viruses at the cellular level.The antigenicity analysis suggested that these isolates could be classified into 2 separate antigenic clusters.Our research provides crucial data to help understand the prevalence and biological characteristics of H9N2 AIVs in central China.It also highlights the necessity of enhancing the surveillance of H9N2 AIVs.展开更多
H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are prote...H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are protective and allow mass administration.Of note,these vaccines elicit undetectable H7N9-specific hemagglutination-inhibition(HI)but high IgG antibodies in chickens.However,the molecular basis and protective mechanism underlying this particular antibody immunity remain unclear.Herein,immunization with an NDV_(vec)H7N9 induced low anti-H7N9 HI and virus neutralization titers but high levels of hemagglutinin(HA)-binding IgG antibodies in chickens.Three residues(S150,G151 and S152)in HA of H7N9 virus were identified as the dominant epitopes recognized by the NDV_(vec)H7N9 immune serum.Passively transferred NDV_(vec)H7N9 immune serum conferred complete protection against H7N9 virus infection in chickens.The NDV_(vec)H7N9 immune serum can mediate a potent lysis of HA-expressing and H7N9 virus-infected cells and significantly suppress H7N9 virus infectivity.These activities of the serum were significantly impaired after heat-inactivation or treatment with complement inhibitor,suggesting the engagement of the complement system.Moreover,mutations in the 150-SGS-152 sites in HA resulted in significant reductions in cell lysis and virus neutralization mediated by the NDV_(vec)H7N9 immune serum,indicating the requirement of antibody-antigen binding for complement activity.Therefore,antibodies induced by the NDV_(vec)H7N9 can activate antibody-dependent complement-mediated lysis of H7N9 virus-infected cells and complement-mediated neutralization of H7N9 virus.Our findings unveiled a novel role of the complement in protection conferred by the NDV_(vec)H7N9,highlighting a potential benefit of engaging the complement system in H7N9 vaccine design.展开更多
Background:An epizootic of highly pathogenic avian influenza A(H5N1)has spread worldwide since 2022.Even though this virus has been extensively studied for many decades,little is known about its evolution in South Ame...Background:An epizootic of highly pathogenic avian influenza A(H5N1)has spread worldwide since 2022.Even though this virus has been extensively studied for many decades,little is known about its evolution in South America.Methods:Here,we describe the sequencing and characterization of 13 H5N1 genomes collected from wild birds,poultry,and wild mammals in Peru during the genomic surveillance of this outbreak.Results:The samples belonged to the highly pathogenic avian influenza(H5N1)2.3.4.4b clade.Chilean and Peruvian samples clustered in the same group and therefore share a common ancestor.An analysis of the hemag-glutinin and neuraminidase genes detected new mutations,some dependent upon the host type.Conclusions:The genomic surveillance of highly pathogenic avian influenza is necessary to promote the One Health policy and to overcome the new problems entailed by climate change,which may alter the habitats of resident and migratory birds.展开更多
[Objective] The study aimed to investigate the genetic variation characters of entire sequences between two H9N2 subtype avian influenza virus strains and other reference strains.[Method] The entire sequences of 8 gen...[Objective] The study aimed to investigate the genetic variation characters of entire sequences between two H9N2 subtype avian influenza virus strains and other reference strains.[Method] The entire sequences of 8 genes were obtained by using RT-PCR,and these sequences were analyzed with that of six H9N2 subtype avian influenza isolates in homology comparison and genetic evolution relation.[Result] The results showed that the nucleotide sequence of entire gene of the strain shared 91.1%-95.4% homology with other seven reference strains,and PG08 shared the highest homology 91.3% with C/BJ/1/94;ZD06 shared the highest homology 92.3% with D/HK/Y280/97.HA cleavage sites of two H9N2 subtype avian influenza virus isolated strains were PARSSR/GLF,typical of mildly pathogenic avian influenza virus.[Conclusion] Phylogenetic tree for entire gene of eight strains showed that the genetic relationship was the closest between ZD06 and C/Pak/2/99 strains,which belonged to the Eurasian lineage;PG08 shared the highest homology 91.3% with ZD06,it may be the product of gene rearrangements of other sub-lines.展开更多
HA Gene of H9N2. sub-type avian influenza virus from three strains in different times was amplified, purified and then sequenced. The results of its sequence analysis showed that the whole length of the amplified HA G...HA Gene of H9N2. sub-type avian influenza virus from three strains in different times was amplified, purified and then sequenced. The results of its sequence analysis showed that the whole length of the amplified HA Gene was 1 683 bp, encoding 560 amino acids. The amino acid sequence of three virulent strains at cleavage site was R-S-S-R, which was low-pathogenicity strain. According to the amino acid sequence of the isolated strains, there were 7 potential glycosylation sites, and the receptor-binding site was the specific sequence of the avian-derived influenza virus. Amino acids on the left edge of receptor-binding site were all NGQQG, while amino acids on the right edge of receptor-binding site were GTSKA. From the comparative sequence analysis of HA Gene from some referenced strains, the results indicated that nucleotide and amino acid homology between isolated strains and referenced strains was higher. Evolutionary tree analysis showed that three strains were all Eurasian species, and there was a close relationship with the representative strains of A / duck / Hong Kong/Y280/97.展开更多
BACKGROUND Most of the first symptoms of avian influenza are respiratory symptoms,and cases with occipital neuralgia as the first manifestation are rarely reported.CASE SUMMARY A middle-aged patient complaining of par...BACKGROUND Most of the first symptoms of avian influenza are respiratory symptoms,and cases with occipital neuralgia as the first manifestation are rarely reported.CASE SUMMARY A middle-aged patient complaining of paroxysmal pain behind the ear was admitted to our hospital.The patient’s condition changed rapidly,and high fever,unexpected respiratory failure,and multiple organ failure developed rapidly.The patient was diagnosed with H7N9 avian influenza based on etiology.CONCLUSION We believe that the etiology of occipital neuralgia is complex and could be the earliest manifestation of severe diseases.The possibility of an infectious disease should be considered when occipital neuralgia is accompanied by fever.Avian influenza is one of these causative agents.展开更多
The highly pathogenic influenza A virus subtype H5N1 spread throughout Asia since 2003, reached to Europe in 2005, and the Middle East, as well as Africa and caused a global concern for a potential pandemic threat las...The highly pathogenic influenza A virus subtype H5N1 spread throughout Asia since 2003, reached to Europe in 2005, and the Middle East, as well as Africa and caused a global concern for a potential pandemic threat last decade. A Clade 2.3.2 H5N1 virus became dominate in the Qinghai Lake region in 2009 with sporadic mammal cases of infection and transferred to Russia and Europe through wild migratory birds. Currently, HPAI H5N1 of clades 2.3.4, 2.3.2, and 7 are the dominant co-circulating H5N1 viruses in poultry in Asia. 2.3.2 Clade is dominant in wild birds through the world whereas there is no evident data about Clade 7 circulation in wild birds. We detected HPAI H5N1 virus of Clade 7.1 in Qinghai Lake, that closely related to Shanxi-like and Vietnam viruses co-circulating in poultry. This is the first report of Clade 7.1 H5N1 in wild birds. Based on phylogenetic analyses, the virus can be originated from Clade 7.1 virus gene pool that spread in Vietnam and Chinese poultry and could spread with migratory birds to Qinghai Lake. The Qinghai Lake continues to be significant hotspot for H5N1 surveillance since the regular outbreaks occurred there in wild birds and mammals. Based on these facts and findings, the related researchers should pay more attention to the Qinghai Lake basin as significant hotspot for H5N1 avian influenza surveillance since the regular H5N1 outbreaks occurred there in wild birds with sporadic mammal cases of infection.展开更多
Objective In China, 24 cases of human infection with highly pathogenic avian influenza(HPAI) H5 N6 virus have been confirmed since the first confirmed case in 2014. Therefore, we developed and assessed two H5 N6 candi...Objective In China, 24 cases of human infection with highly pathogenic avian influenza(HPAI) H5 N6 virus have been confirmed since the first confirmed case in 2014. Therefore, we developed and assessed two H5 N6 candidate vaccine viruses(CVVs).Methods In accordance with the World Health Organization(WHO) recommendations, we constructed two reassortant viruses using reverse genetics(RG) technology to match the two different epidemic H5 N6 viruses. We performed complete genome sequencing to determine the genetic stability. We assessed the growth ability of the studied viruses in MDCK cells and conducted a hemagglutination inhibition assay to analyze their antigenicity. Pathogenicity attenuation was also evaluated in vitro and in vivo.Results The results showed that no mutations occurred in hemagglutinin or neuraminidase, and both CVVs retained their original antigenicity. The replication capacity of the two CVVs reached a level similar to that of A/Puerto Rico/8/34 in MDCK cells. The two CVVs showed low pathogenicity in vitro and in vivo, which are in line with the WHO requirements for CVVs.Conclusion We obtained two genetically stable CVVs of HPAI H5N6 with high growth characteristics,which may aid in our preparedness for a potential H5N6 pandemic.展开更多
Influenza remains a world wide health threat, thus the need for a high-throughput and robust assay to quantify both seasonal and avian in-fluenza A strains. Therefore, a 384-well plate format was developed for the med...Influenza remains a world wide health threat, thus the need for a high-throughput and robust assay to quantify both seasonal and avian in-fluenza A strains. Therefore, a 384-well plate format was developed for the median tissue culture infectious dose assay (TCID50) utilizing the detection of nucleoprotein by an in situ en-zyme linked immunosorbent assay (ELISA) which was optimized for sensitivity in this assay. Highly pathogenic avian influenza, A/Vietnam/ 1203/04 (H5N1), and interpandemic strains, A/ New Caledonia/20/99 (H1N1) and A/Brisbane/ 10/07 (H3N2), were quantified using this high- throughput assay. Each 384-well plate can be used to analyze ten viral samples in quadrupli-cate, eight dilutions per sample, including all necessary assay controls. The results obtained from 384-well plates were comparable to tradi-tional 96-well plates and also demonstrate re-peatability, intermediate precision, and assay linearity. Further, the use of 384-well plates in-creased the throughput of sample analysis and the precision and accuracy of the resulting titer.展开更多
Avian influenza has caused enormous economic losses to poultry industry. To develop kits for rapid diagnosis of avian influenza virus (AIV) H9 subtype, 8-week-old Balb/c mice were administered with pcDNA3.1 ( + )...Avian influenza has caused enormous economic losses to poultry industry. To develop kits for rapid diagnosis of avian influenza virus (AIV) H9 subtype, 8-week-old Balb/c mice were administered with pcDNA3.1 ( + ) carrying hemagglutinin (HA) gene of AIV H9 subtype. After cell fusion, one positive hybridoma cell strain was screened out by hemagglutination inhibition assay ( HI ), and another positive hybddoma call strain was screened out by ELISA. After subcloning 3 times, the two cell strains could still secret antibodies against the HA of AIV H9 subtype. The mono- clonal antibodies did not react with Newcastle disease virus, AIV H5 subtype and duck adenovirus A. Their subtypes were IgG2b with kappa light chain. These two hybridoma cell strains may play an important role in rapid diagnosis and early-warning surveillance of AIV H9 subtype.展开更多
[ Objective] To prepare inactivated emulsion vaccine against Newcastle disease, infectious bronchitis and H9 subtype avian influenza. [ Method] Antigen fluid of Newcastle disease virus (NDV) La Sota strain, infectio...[ Objective] To prepare inactivated emulsion vaccine against Newcastle disease, infectious bronchitis and H9 subtype avian influenza. [ Method] Antigen fluid of Newcastle disease virus (NDV) La Sota strain, infectious bronchitis virus (IBV) M41 strain and HgN2 subtype avian in- fluenza virus (AIV) WD strain was prepared by propagation in chicken embryos, respectively. The antigen fluid was concentrated with FILTRON Cassette ultra-filtration system and inactivated by formalin. The antigen fluid of NDV, IBV and AIV was mixed at a volume ratio of 1:1:1. Then the mixture was emulsified by Span-80 and Tween-80 and added medical white oil as adjuvant. The sterility and physical characteristics of the prepared ND-IB-AI combined vaccine were detected. [ Result] The three batches of ND-IB-AI combined vaccine were germ-free, milky white, with water-in- oil pattern and with viscosity of 6.3 -6.8 s. The water and oil were not separated after rest at 37 ~C for 21 d or centrifugation. [ Conclusion] The three batches of ND-IB-AI combined vaccine were germ-free and reached the standard for physical characteristics of vaccines.展开更多
[ Objective] This paper aimed to investigate the origin, characteristics and molecular evolution of duck derived H4N6 subtype avian influ- enza virus (DK/SH/Y20/06) and enrich the epidemiologic data of the waterfowl...[ Objective] This paper aimed to investigate the origin, characteristics and molecular evolution of duck derived H4N6 subtype avian influ- enza virus (DK/SH/Y20/06) and enrich the epidemiologic data of the waterfowl origin AIV. [Method] The entire genome of DK/SH/Y20/06 was amplified and subjected to genome sequencing. The molecular software was used for sequence analysis and phylogenetic tree construction of DK/ SH/Y20/06 with some other reference sequences in GenBank. [Result] The results indicated that the amino acid sequence adjacent to HA cleav- age site was PEKASR ↓ GLF, which was the typical characteristics of the LPAIV. The phylogenetic analysis indicated that the HA gene of the isolate was derived from the Eurasian lineage in the eastern hemisphere. The NA gene was at the same branch with A/rnallard/Yan chen/2005( H4N6), sharing 98.3% sequence identity. The PB2, PB1, NP and PA gene of this isolate had genetically close relationships with H6 subtype AIV which is epidemic in China at present. The M gene fell into the same branch with A/environment/Korea/CSM05/2004( H3N1 ). The NS segment had the highest similarity with A/wild duck/Korea/YS44/2004(H1N2). The eight genes were not at the same branch and shared a low similarity with other H4N6 subtype avian influenza viruses isolated in North America. [Condusion] These data showed that DK/SH/Y20/06(H4N6) was possibly a re- combinant virus derived from H4N6 subtype, H6N2, H6N5, H3N1 and H1 N2 subtype AIV by complex gene recombination in duck.展开更多
[ Objective ] The paper was to prevent the occurrence of broiler avian influenza virus HS subtype Re-8 strain effectively in the breeding process of broilers. [Method] The maternal antibodies of broilers in Beijing Ba...[ Objective ] The paper was to prevent the occurrence of broiler avian influenza virus HS subtype Re-8 strain effectively in the breeding process of broilers. [Method] The maternal antibodies of broilers in Beijing Baochen Hongwang farm were monitored. According to the disappearance law of maternal antibody, the optimal immune time of broiler avian influenza virus H5 subtype Re-8 strain was determined. [ Result] The maternal antibody level of 2-day-old broilers was relatively high, concentrated at 6 log2 -9 log2, and the antibody positive rate was 100%. The maternal antibody level of 8-day-old broilers concentrated at 4 log2 -6 log2, and the antibody positive rate was 100%. The maternal antibody level of 17-day-old broilers concentrated at 0 log2 -3 log2 , and the antibody positive rate was 0. The average maternal antibody level of 24 - 37 days old broilers was 〈 1 log2, and the antibody positive rate was 0. [ Conclusion ] Although the av- erage maternal antibody level of 8-day-old broilers was higher than 5 log2 , 20% of chickens was 4 log2, and maternal antibody could not protect the flock completely. Therefore, the best primary immunization day age of chicks against avian influenza virus was 8 - 10 days of age.展开更多
The study was designed to evaluate the level of knowledge of Nigerian Veterinary Laboratory Staff on the nature of Highly Pathogenic Avian Influenza (HPAI) disease using structured questionnaires. The study comprised ...The study was designed to evaluate the level of knowledge of Nigerian Veterinary Laboratory Staff on the nature of Highly Pathogenic Avian Influenza (HPAI) disease using structured questionnaires. The study comprised the Staff of National Veterinary Research Institute (NVRI) and five reference Veterinary Teaching Hospitals (VTH) designated for HPAI diagnosis. A total of 69 questionnaires were distributed to the laboratory staff. Questions on the general nature of the disease such as the cause, signs, mode of transmission, methods of identification, lesions, control and prevention, etc. were asked. The results showed that 77.38% of the staff answered all the questions correctly indicating their considerable knowledge of the HPAI disease. Considerable percentage of the staff listed correctly the equipment used for serology (36.23%) and RT-PCR (31.88%). Interestingly only 13.04% of the staff listed correctly the equipment used in rapid tests despite the fact that they are simpler and recommended for all P2 laboratories. In conclusion, the veterinary laboratory staff assessed demonstrated a significant level of knowledge on HPAI diagnosis;however, most of their laboratories lack the structure, organization, funds and basic facilities required for effective HPAI diagnosis.展开更多
The aim of study was to detect H5N1 virus in wild geese in Qinghai Province in 2012. The work was provided according to WHO and OIE guidelines. In 2012, we collected 532 samples from wild geese of two species: Bar-hea...The aim of study was to detect H5N1 virus in wild geese in Qinghai Province in 2012. The work was provided according to WHO and OIE guidelines. In 2012, we collected 532 samples from wild geese of two species: Bar-headed Goose (Anser indicus) and Graylag Goose (Anser anser). We analyzed samples by chicken embryo inoculation and PCR. No avian influenza viruses were isolated. History of HPAI H5N1 shows obvious importance of Central Asian region in its spreading. The outbreaks of the H5N1 Highly Pathogenic Avian Influenza (HPAI H5N1) were reported in wild birds at the Qinghai Lake since 2005. This area seems to be key point for H5N1 avian influenza surveillance in wild birds. We did not find viruses although H5N1 cases in poultry were reported from 5 provinces of China in 2012. Annual surveillance is required for early AIV detection in this region.展开更多
This study was conducted to explore the multiplication pattern of the recombinant strain Re-7 of avian influenza virus subtype H5 in Madin Darby Canine Kidney (MDCK) cells and to determine the optimal multiplicity o...This study was conducted to explore the multiplication pattern of the recombinant strain Re-7 of avian influenza virus subtype H5 in Madin Darby Canine Kidney (MDCK) cells and to determine the optimal multiplicity of infection (MOI) and the optimal time for virus harvest. The recombinant strain Re-7 was inoculated at different MOIs into MDCK cells grown in serum-free medium in 100 L bioreactors for replication. Then, the hemagglutination(HA) titer, 50% tissue culture infectious dose (TCID50) and 50% embryo infectious dose (EID50) of culture medium were measured once every 12 h from 24 h after virus inoculation to determine the optimal MOI. After that, virus was inoculated at the optimal MOI determined above into MDCK cells for large-scale virus replication to determine the optimal time for virus harvest. The results showed that the optimal MOI was 10 2, and the optimal time for virus harvest was 60 h after inoculation. Under these conditions, the HA titer, TCIDso per 1 mL and EIDso per 0.1 mL were increased to 1:102 4, 10^7.33 and 10^6.83, respectively. This study provides relatively stable parameters for large-scale production of the recombinant strain Re-7 of avian influenza virus subtype H5.展开更多
Avian influenza is a viral contagious disease that affects poultry industry and human health. Vaccination has been considered as a preventive tool in the eradication of AI, but it causes some limitations including tra...Avian influenza is a viral contagious disease that affects poultry industry and human health. Vaccination has been considered as a preventive tool in the eradication of AI, but it causes some limitations including trade embargoes and interfering with serologic surveillance in differentiation between infected and vaccinated animals (DIVA strategy). Several distinct DIVA strategies have been presented to conquer these limitations. In this study, the open reading frame of NS1 gene of a H9N2 subtype of AI virus was amplified by polymerase chain reaction. After extraction and purification of NS1 gene from agarose gel, it was inserted into two different pGEX-4T-1 and pMAL-c2X plasmids and transferred in DH5α strain of Escherichia coli by using electroporation procedure. The E. coli colonies possessing recombinant NS1 gene were screened using PCR, restriction mapping and sequencing analysis. The expressed rNS1 protein was purified using affinity chromatography based on MBP (pMAL- c2X) and GST (pGEX-4T-1). The MBP-NS1 and GST- NS1 proteins on SDS-PAGE had bands with molecular weight of 68 and 52 kDa respectively. Western blotting with MBP-NS1 protein showed positive reaction using antisera obtained from chickens challenged with a H9N2 subtype strain. But, the most sera prepared from H9N2 vaccinated chickens were negative in WB. These findings indicated that the MBP-rNS1 protein of 26 kDa expressed by pMAL-c2X plasmid can be used in a DIVA for differentiation of AI infected and vaccinated chickens.展开更多
基金This work was supported by the National Key Research andDevelopment Programof China(2021YFD1800200 and2021YFC2301700).
文摘The stamping-out strategy has been used to control highly pathogenic avian influenza viruses in many countries,driven by the belief that vaccination would not be successful against such viruses and fears that avian influenza virus in vaccinated birds would evolve more rapidly and pose a greater risk to humans.In this review,we summarize the successes in controlling highly pathogenic avian influenza in China and make suggestions regarding the requirements for vaccine selection and effectiveness.In addition,we present evidence that vaccination of poultry not only eliminates human infection with avian influenza virus,but also significantly reduces and abolishes some harmful characteristics of avian influenza virus.
基金Fundamental Research Program of Shanxi Province,China(202103021224156)National Natural Science Foundation of China(32202788)+5 种基金Special Research Fund of Shanxi Agricultural University for High-level Talents,China(2021XG004)Science and Technology Innovation Program of Shanxi Agricultural University,China(2021BQ78)special fund for Science and Technology Innovation Teams of Shanxi Province,China(202304051001041)?Shanxi Province Excellent Doctoral Work Award-Scientific Research Project,China(SXBYKY2021005,SXBYKY2021063,SXBYKY2022014)the Fund for Shanxi“1331 Project”,China(20211331-13)earmarked fund for Modern Agro-industry Technology Research System of Shanxi Province,China.
文摘The H9N2 subtype of avian influenza virus(AIV)is widely prevalent in poultry and wild birds globally,and has become the predominant subtype circulating in poultry in China.The H9N2 AIV can directly or indirectly(by serving as a"donor virus")infect humans,posing a significant threat to public health.Currently,there is a lack of in-depth research on the prevalence of H9N2 viruses in Shanxi Province,central China.In this study,we isolated 14 H9N2 AIVs from October 2020 to April 2022 in Shanxi Province,and genetic analysis revealed that these viruses belonged to 7 different genotypes.Our study on animals revealed that the H9N2 strains we identified displayed high transmission efficiency among chicken populations,and exhibited diverse replication abilities within these birds.These viruses could replicate efficiently in the lungs of mice,with one strain also demonstrating the capacity to reproduce in organs like the brain and kidneys.At the cellular level,the replication ability of different H9N2 strains was evaluated using plaque formation assays and multi-step growth curve assays,revealing significant differences in the replication and proliferation efficiency of the various H9N2 viruses at the cellular level.The antigenicity analysis suggested that these isolates could be classified into 2 separate antigenic clusters.Our research provides crucial data to help understand the prevalence and biological characteristics of H9N2 AIVs in central China.It also highlights the necessity of enhancing the surveillance of H9N2 AIVs.
基金supported by the earmarked fund for China Agriculture Research System(CARS-40)the Key Research and Development Project of Yangzhou(Modern Agriculture),China(YZ2022052)the‘‘High-end Talent Support Program’’of Yangzhou University,China。
文摘H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are protective and allow mass administration.Of note,these vaccines elicit undetectable H7N9-specific hemagglutination-inhibition(HI)but high IgG antibodies in chickens.However,the molecular basis and protective mechanism underlying this particular antibody immunity remain unclear.Herein,immunization with an NDV_(vec)H7N9 induced low anti-H7N9 HI and virus neutralization titers but high levels of hemagglutinin(HA)-binding IgG antibodies in chickens.Three residues(S150,G151 and S152)in HA of H7N9 virus were identified as the dominant epitopes recognized by the NDV_(vec)H7N9 immune serum.Passively transferred NDV_(vec)H7N9 immune serum conferred complete protection against H7N9 virus infection in chickens.The NDV_(vec)H7N9 immune serum can mediate a potent lysis of HA-expressing and H7N9 virus-infected cells and significantly suppress H7N9 virus infectivity.These activities of the serum were significantly impaired after heat-inactivation or treatment with complement inhibitor,suggesting the engagement of the complement system.Moreover,mutations in the 150-SGS-152 sites in HA resulted in significant reductions in cell lysis and virus neutralization mediated by the NDV_(vec)H7N9 immune serum,indicating the requirement of antibody-antigen binding for complement activity.Therefore,antibodies induced by the NDV_(vec)H7N9 can activate antibody-dependent complement-mediated lysis of H7N9 virus-infected cells and complement-mediated neutralization of H7N9 virus.Our findings unveiled a novel role of the complement in protection conferred by the NDV_(vec)H7N9,highlighting a potential benefit of engaging the complement system in H7N9 vaccine design.
文摘Background:An epizootic of highly pathogenic avian influenza A(H5N1)has spread worldwide since 2022.Even though this virus has been extensively studied for many decades,little is known about its evolution in South America.Methods:Here,we describe the sequencing and characterization of 13 H5N1 genomes collected from wild birds,poultry,and wild mammals in Peru during the genomic surveillance of this outbreak.Results:The samples belonged to the highly pathogenic avian influenza(H5N1)2.3.4.4b clade.Chilean and Peruvian samples clustered in the same group and therefore share a common ancestor.An analysis of the hemag-glutinin and neuraminidase genes detected new mutations,some dependent upon the host type.Conclusions:The genomic surveillance of highly pathogenic avian influenza is necessary to promote the One Health policy and to overcome the new problems entailed by climate change,which may alter the habitats of resident and migratory birds.
基金Supported by a Sub-project of 973 Program of China(2005CB523001)~~
文摘[Objective] The study aimed to investigate the genetic variation characters of entire sequences between two H9N2 subtype avian influenza virus strains and other reference strains.[Method] The entire sequences of 8 genes were obtained by using RT-PCR,and these sequences were analyzed with that of six H9N2 subtype avian influenza isolates in homology comparison and genetic evolution relation.[Result] The results showed that the nucleotide sequence of entire gene of the strain shared 91.1%-95.4% homology with other seven reference strains,and PG08 shared the highest homology 91.3% with C/BJ/1/94;ZD06 shared the highest homology 92.3% with D/HK/Y280/97.HA cleavage sites of two H9N2 subtype avian influenza virus isolated strains were PARSSR/GLF,typical of mildly pathogenic avian influenza virus.[Conclusion] Phylogenetic tree for entire gene of eight strains showed that the genetic relationship was the closest between ZD06 and C/Pak/2/99 strains,which belonged to the Eurasian lineage;PG08 shared the highest homology 91.3% with ZD06,it may be the product of gene rearrangements of other sub-lines.
文摘HA Gene of H9N2. sub-type avian influenza virus from three strains in different times was amplified, purified and then sequenced. The results of its sequence analysis showed that the whole length of the amplified HA Gene was 1 683 bp, encoding 560 amino acids. The amino acid sequence of three virulent strains at cleavage site was R-S-S-R, which was low-pathogenicity strain. According to the amino acid sequence of the isolated strains, there were 7 potential glycosylation sites, and the receptor-binding site was the specific sequence of the avian-derived influenza virus. Amino acids on the left edge of receptor-binding site were all NGQQG, while amino acids on the right edge of receptor-binding site were GTSKA. From the comparative sequence analysis of HA Gene from some referenced strains, the results indicated that nucleotide and amino acid homology between isolated strains and referenced strains was higher. Evolutionary tree analysis showed that three strains were all Eurasian species, and there was a close relationship with the representative strains of A / duck / Hong Kong/Y280/97.
文摘BACKGROUND Most of the first symptoms of avian influenza are respiratory symptoms,and cases with occipital neuralgia as the first manifestation are rarely reported.CASE SUMMARY A middle-aged patient complaining of paroxysmal pain behind the ear was admitted to our hospital.The patient’s condition changed rapidly,and high fever,unexpected respiratory failure,and multiple organ failure developed rapidly.The patient was diagnosed with H7N9 avian influenza based on etiology.CONCLUSION We believe that the etiology of occipital neuralgia is complex and could be the earliest manifestation of severe diseases.The possibility of an infectious disease should be considered when occipital neuralgia is accompanied by fever.Avian influenza is one of these causative agents.
文摘The highly pathogenic influenza A virus subtype H5N1 spread throughout Asia since 2003, reached to Europe in 2005, and the Middle East, as well as Africa and caused a global concern for a potential pandemic threat last decade. A Clade 2.3.2 H5N1 virus became dominate in the Qinghai Lake region in 2009 with sporadic mammal cases of infection and transferred to Russia and Europe through wild migratory birds. Currently, HPAI H5N1 of clades 2.3.4, 2.3.2, and 7 are the dominant co-circulating H5N1 viruses in poultry in Asia. 2.3.2 Clade is dominant in wild birds through the world whereas there is no evident data about Clade 7 circulation in wild birds. We detected HPAI H5N1 virus of Clade 7.1 in Qinghai Lake, that closely related to Shanxi-like and Vietnam viruses co-circulating in poultry. This is the first report of Clade 7.1 H5N1 in wild birds. Based on phylogenetic analyses, the virus can be originated from Clade 7.1 virus gene pool that spread in Vietnam and Chinese poultry and could spread with migratory birds to Qinghai Lake. The Qinghai Lake continues to be significant hotspot for H5N1 surveillance since the regular outbreaks occurred there in wild birds and mammals. Based on these facts and findings, the related researchers should pay more attention to the Qinghai Lake basin as significant hotspot for H5N1 avian influenza surveillance since the regular H5N1 outbreaks occurred there in wild birds with sporadic mammal cases of infection.
基金This study was supported by the National Major Science and Technology Project for Control and Prevention of Major Infectious Diseases in China[No.2018ZX10711001,2018ZX10305409-004-002]Emergency Prevention and Control Project of Ministry of Science and Technology of China[No.10600100000015001206].
文摘Objective In China, 24 cases of human infection with highly pathogenic avian influenza(HPAI) H5 N6 virus have been confirmed since the first confirmed case in 2014. Therefore, we developed and assessed two H5 N6 candidate vaccine viruses(CVVs).Methods In accordance with the World Health Organization(WHO) recommendations, we constructed two reassortant viruses using reverse genetics(RG) technology to match the two different epidemic H5 N6 viruses. We performed complete genome sequencing to determine the genetic stability. We assessed the growth ability of the studied viruses in MDCK cells and conducted a hemagglutination inhibition assay to analyze their antigenicity. Pathogenicity attenuation was also evaluated in vitro and in vivo.Results The results showed that no mutations occurred in hemagglutinin or neuraminidase, and both CVVs retained their original antigenicity. The replication capacity of the two CVVs reached a level similar to that of A/Puerto Rico/8/34 in MDCK cells. The two CVVs showed low pathogenicity in vitro and in vivo, which are in line with the WHO requirements for CVVs.Conclusion We obtained two genetically stable CVVs of HPAI H5N6 with high growth characteristics,which may aid in our preparedness for a potential H5N6 pandemic.
文摘Influenza remains a world wide health threat, thus the need for a high-throughput and robust assay to quantify both seasonal and avian in-fluenza A strains. Therefore, a 384-well plate format was developed for the median tissue culture infectious dose assay (TCID50) utilizing the detection of nucleoprotein by an in situ en-zyme linked immunosorbent assay (ELISA) which was optimized for sensitivity in this assay. Highly pathogenic avian influenza, A/Vietnam/ 1203/04 (H5N1), and interpandemic strains, A/ New Caledonia/20/99 (H1N1) and A/Brisbane/ 10/07 (H3N2), were quantified using this high- throughput assay. Each 384-well plate can be used to analyze ten viral samples in quadrupli-cate, eight dilutions per sample, including all necessary assay controls. The results obtained from 384-well plates were comparable to tradi-tional 96-well plates and also demonstrate re-peatability, intermediate precision, and assay linearity. Further, the use of 384-well plates in-creased the throughput of sample analysis and the precision and accuracy of the resulting titer.
基金funded by the National Key Technology R&D Program(2006BAK20A29)the Shenzhen Entry-Exit Inspection and Quarantine Project(sz2008102)
文摘Avian influenza has caused enormous economic losses to poultry industry. To develop kits for rapid diagnosis of avian influenza virus (AIV) H9 subtype, 8-week-old Balb/c mice were administered with pcDNA3.1 ( + ) carrying hemagglutinin (HA) gene of AIV H9 subtype. After cell fusion, one positive hybridoma cell strain was screened out by hemagglutination inhibition assay ( HI ), and another positive hybddoma call strain was screened out by ELISA. After subcloning 3 times, the two cell strains could still secret antibodies against the HA of AIV H9 subtype. The mono- clonal antibodies did not react with Newcastle disease virus, AIV H5 subtype and duck adenovirus A. Their subtypes were IgG2b with kappa light chain. These two hybridoma cell strains may play an important role in rapid diagnosis and early-warning surveillance of AIV H9 subtype.
文摘[ Objective] To prepare inactivated emulsion vaccine against Newcastle disease, infectious bronchitis and H9 subtype avian influenza. [ Method] Antigen fluid of Newcastle disease virus (NDV) La Sota strain, infectious bronchitis virus (IBV) M41 strain and HgN2 subtype avian in- fluenza virus (AIV) WD strain was prepared by propagation in chicken embryos, respectively. The antigen fluid was concentrated with FILTRON Cassette ultra-filtration system and inactivated by formalin. The antigen fluid of NDV, IBV and AIV was mixed at a volume ratio of 1:1:1. Then the mixture was emulsified by Span-80 and Tween-80 and added medical white oil as adjuvant. The sterility and physical characteristics of the prepared ND-IB-AI combined vaccine were detected. [ Result] The three batches of ND-IB-AI combined vaccine were germ-free, milky white, with water-in- oil pattern and with viscosity of 6.3 -6.8 s. The water and oil were not separated after rest at 37 ~C for 21 d or centrifugation. [ Conclusion] The three batches of ND-IB-AI combined vaccine were germ-free and reached the standard for physical characteristics of vaccines.
基金supported by Science and Technology Commission of Shanghai Municipality Biomedicine Major Projects(09DZ1906602)
文摘[ Objective] This paper aimed to investigate the origin, characteristics and molecular evolution of duck derived H4N6 subtype avian influ- enza virus (DK/SH/Y20/06) and enrich the epidemiologic data of the waterfowl origin AIV. [Method] The entire genome of DK/SH/Y20/06 was amplified and subjected to genome sequencing. The molecular software was used for sequence analysis and phylogenetic tree construction of DK/ SH/Y20/06 with some other reference sequences in GenBank. [Result] The results indicated that the amino acid sequence adjacent to HA cleav- age site was PEKASR ↓ GLF, which was the typical characteristics of the LPAIV. The phylogenetic analysis indicated that the HA gene of the isolate was derived from the Eurasian lineage in the eastern hemisphere. The NA gene was at the same branch with A/rnallard/Yan chen/2005( H4N6), sharing 98.3% sequence identity. The PB2, PB1, NP and PA gene of this isolate had genetically close relationships with H6 subtype AIV which is epidemic in China at present. The M gene fell into the same branch with A/environment/Korea/CSM05/2004( H3N1 ). The NS segment had the highest similarity with A/wild duck/Korea/YS44/2004(H1N2). The eight genes were not at the same branch and shared a low similarity with other H4N6 subtype avian influenza viruses isolated in North America. [Condusion] These data showed that DK/SH/Y20/06(H4N6) was possibly a re- combinant virus derived from H4N6 subtype, H6N2, H6N5, H3N1 and H1 N2 subtype AIV by complex gene recombination in duck.
文摘[ Objective ] The paper was to prevent the occurrence of broiler avian influenza virus HS subtype Re-8 strain effectively in the breeding process of broilers. [Method] The maternal antibodies of broilers in Beijing Baochen Hongwang farm were monitored. According to the disappearance law of maternal antibody, the optimal immune time of broiler avian influenza virus H5 subtype Re-8 strain was determined. [ Result] The maternal antibody level of 2-day-old broilers was relatively high, concentrated at 6 log2 -9 log2, and the antibody positive rate was 100%. The maternal antibody level of 8-day-old broilers concentrated at 4 log2 -6 log2, and the antibody positive rate was 100%. The maternal antibody level of 17-day-old broilers concentrated at 0 log2 -3 log2 , and the antibody positive rate was 0. The average maternal antibody level of 24 - 37 days old broilers was 〈 1 log2, and the antibody positive rate was 0. [ Conclusion ] Although the av- erage maternal antibody level of 8-day-old broilers was higher than 5 log2 , 20% of chickens was 4 log2, and maternal antibody could not protect the flock completely. Therefore, the best primary immunization day age of chicks against avian influenza virus was 8 - 10 days of age.
文摘The study was designed to evaluate the level of knowledge of Nigerian Veterinary Laboratory Staff on the nature of Highly Pathogenic Avian Influenza (HPAI) disease using structured questionnaires. The study comprised the Staff of National Veterinary Research Institute (NVRI) and five reference Veterinary Teaching Hospitals (VTH) designated for HPAI diagnosis. A total of 69 questionnaires were distributed to the laboratory staff. Questions on the general nature of the disease such as the cause, signs, mode of transmission, methods of identification, lesions, control and prevention, etc. were asked. The results showed that 77.38% of the staff answered all the questions correctly indicating their considerable knowledge of the HPAI disease. Considerable percentage of the staff listed correctly the equipment used for serology (36.23%) and RT-PCR (31.88%). Interestingly only 13.04% of the staff listed correctly the equipment used in rapid tests despite the fact that they are simpler and recommended for all P2 laboratories. In conclusion, the veterinary laboratory staff assessed demonstrated a significant level of knowledge on HPAI diagnosis;however, most of their laboratories lack the structure, organization, funds and basic facilities required for effective HPAI diagnosis.
文摘The aim of study was to detect H5N1 virus in wild geese in Qinghai Province in 2012. The work was provided according to WHO and OIE guidelines. In 2012, we collected 532 samples from wild geese of two species: Bar-headed Goose (Anser indicus) and Graylag Goose (Anser anser). We analyzed samples by chicken embryo inoculation and PCR. No avian influenza viruses were isolated. History of HPAI H5N1 shows obvious importance of Central Asian region in its spreading. The outbreaks of the H5N1 Highly Pathogenic Avian Influenza (HPAI H5N1) were reported in wild birds at the Qinghai Lake since 2005. This area seems to be key point for H5N1 avian influenza surveillance in wild birds. We did not find viruses although H5N1 cases in poultry were reported from 5 provinces of China in 2012. Annual surveillance is required for early AIV detection in this region.
文摘This study was conducted to explore the multiplication pattern of the recombinant strain Re-7 of avian influenza virus subtype H5 in Madin Darby Canine Kidney (MDCK) cells and to determine the optimal multiplicity of infection (MOI) and the optimal time for virus harvest. The recombinant strain Re-7 was inoculated at different MOIs into MDCK cells grown in serum-free medium in 100 L bioreactors for replication. Then, the hemagglutination(HA) titer, 50% tissue culture infectious dose (TCID50) and 50% embryo infectious dose (EID50) of culture medium were measured once every 12 h from 24 h after virus inoculation to determine the optimal MOI. After that, virus was inoculated at the optimal MOI determined above into MDCK cells for large-scale virus replication to determine the optimal time for virus harvest. The results showed that the optimal MOI was 10 2, and the optimal time for virus harvest was 60 h after inoculation. Under these conditions, the HA titer, TCIDso per 1 mL and EIDso per 0.1 mL were increased to 1:102 4, 10^7.33 and 10^6.83, respectively. This study provides relatively stable parameters for large-scale production of the recombinant strain Re-7 of avian influenza virus subtype H5.
文摘Avian influenza is a viral contagious disease that affects poultry industry and human health. Vaccination has been considered as a preventive tool in the eradication of AI, but it causes some limitations including trade embargoes and interfering with serologic surveillance in differentiation between infected and vaccinated animals (DIVA strategy). Several distinct DIVA strategies have been presented to conquer these limitations. In this study, the open reading frame of NS1 gene of a H9N2 subtype of AI virus was amplified by polymerase chain reaction. After extraction and purification of NS1 gene from agarose gel, it was inserted into two different pGEX-4T-1 and pMAL-c2X plasmids and transferred in DH5α strain of Escherichia coli by using electroporation procedure. The E. coli colonies possessing recombinant NS1 gene were screened using PCR, restriction mapping and sequencing analysis. The expressed rNS1 protein was purified using affinity chromatography based on MBP (pMAL- c2X) and GST (pGEX-4T-1). The MBP-NS1 and GST- NS1 proteins on SDS-PAGE had bands with molecular weight of 68 and 52 kDa respectively. Western blotting with MBP-NS1 protein showed positive reaction using antisera obtained from chickens challenged with a H9N2 subtype strain. But, the most sera prepared from H9N2 vaccinated chickens were negative in WB. These findings indicated that the MBP-rNS1 protein of 26 kDa expressed by pMAL-c2X plasmid can be used in a DIVA for differentiation of AI infected and vaccinated chickens.