Interface debonding between particle and matrix in composite propellant influences its macroscopic mechanical properties greatly. For this, the laws of interface cohesive damage and failure were analyzed. Then, its mi...Interface debonding between particle and matrix in composite propellant influences its macroscopic mechanical properties greatly. For this, the laws of interface cohesive damage and failure were analyzed. Then, its microscopic computational model was established. The interface mechanical response was modeled by the bilinear cohesive zone model. The effects of interface properties and particle sizes on the macroscopic mechanical behavior were investigated. Numerical simulation of debonding damage evolution of composite propellant under finite deformation was carried out. The debonding damage nucleation, propagation mechanism and non-uniform distribution of microscopic stress-strain fields were discussed. The results show that the finite element simulation method based on microstructure model can effectively predict the trend of macroscopic mechanical behavior and particle/matrix debonding evolution process. It can be used for damage simulation and failure assessment of composite propellants.展开更多
Some ablation experiments of Ethylene-Propylene-Diene Monomer(EPDM)insulator were carried out in quasi-static low temperature gas environment,gas-phase environment,two-phase environment with Al2O3 grain and high conce...Some ablation experiments of Ethylene-Propylene-Diene Monomer(EPDM)insulator were carried out in quasi-static low temperature gas environment,gas-phase environment,two-phase environment with Al2O3 grain and high concentration Al2O3 grain gas environments.Their charring ablation rate,thickness,surface morphology and main ingredient of the charring layer were analyzed.The experiment results show that the main influent factors for the charring ablation rate are the gas temperature,grain concentration and state of grain impact;the main influent factors for the charring layer thickness are the gas velocity and environment pressure;and the process of SiO2 migrating in the charring layer occur commonly in different gas environments.They provide a foundation for the ablation mechanism research and modeling of EPDM insulator.展开更多
基金Sponsored by the General Armament Department Advanced Research Project (20101019)
文摘Interface debonding between particle and matrix in composite propellant influences its macroscopic mechanical properties greatly. For this, the laws of interface cohesive damage and failure were analyzed. Then, its microscopic computational model was established. The interface mechanical response was modeled by the bilinear cohesive zone model. The effects of interface properties and particle sizes on the macroscopic mechanical behavior were investigated. Numerical simulation of debonding damage evolution of composite propellant under finite deformation was carried out. The debonding damage nucleation, propagation mechanism and non-uniform distribution of microscopic stress-strain fields were discussed. The results show that the finite element simulation method based on microstructure model can effectively predict the trend of macroscopic mechanical behavior and particle/matrix debonding evolution process. It can be used for damage simulation and failure assessment of composite propellants.
基金Sponsored by the National Nature Science Foundation of China(50876091)
文摘Some ablation experiments of Ethylene-Propylene-Diene Monomer(EPDM)insulator were carried out in quasi-static low temperature gas environment,gas-phase environment,two-phase environment with Al2O3 grain and high concentration Al2O3 grain gas environments.Their charring ablation rate,thickness,surface morphology and main ingredient of the charring layer were analyzed.The experiment results show that the main influent factors for the charring ablation rate are the gas temperature,grain concentration and state of grain impact;the main influent factors for the charring layer thickness are the gas velocity and environment pressure;and the process of SiO2 migrating in the charring layer occur commonly in different gas environments.They provide a foundation for the ablation mechanism research and modeling of EPDM insulator.