Aviation turbine engine oils require excellent thermal-oxidative stability because of their high-temperature environments.High-temperature bearing deposit testing is a mandatory method for measuring the thermal-oxidat...Aviation turbine engine oils require excellent thermal-oxidative stability because of their high-temperature environments.High-temperature bearing deposit testing is a mandatory method for measuring the thermal-oxidative performance of aviation lubricant oils,and the relevant apparatus was improved in the present study.Two different commercial aviation turbine engine oils were tested,one with standard performance(known as the SL oil)and the other with high thermal stability,and their thermal-oxidative stability characteristics were evaluated.After 100 h of high-temperature bearing testing,the SL oil was analyzed by using various analytical techniques to investigate its thermal-oxidative process in the bearing test,with its thermal-oxidative degradation mechanism also being discussed.The results indicate that the developed high-temperature bearing apparatus easily meets the test requirements of method 3410.1 in standard FED-STD-791D.The viscosity and total acid number(TAN)of the SL oil increased with the bearing test time,and various deposits were produced in the bearing test,with the micro-particles of the carbon deposits being sphere-like,rod-like,and sheet-like in appearance.The antioxidant additives in the oil were consumed very rapidly in the first 30 h of the bearing test,with N-phenyl-1-naphthylamine being consumed faster than dioctyldiphenylamine.Overall,the oil thermal-oxidative process involves very complex physical and chemical mechanisms.展开更多
Heavy-fuel engines are widely used in UAVs(Unmanned Autonomous Vehicles)because of their reliability and high-power density.In this study,a combustion model for an in-cylinder direct injection engine has been imple-me...Heavy-fuel engines are widely used in UAVs(Unmanned Autonomous Vehicles)because of their reliability and high-power density.In this study,a combustion model for an in-cylinder direct injection engine has been imple-mented using the AVL FIRE software.The effects of the angle of nozzle inclination on fuel evaporation,mixture distribution,and combustion in the engine cylinder have been systematically studied at 5500 r/min and consider-ing full load cruise conditions.According to the results,as the angle of nozzle inclination increases,the maximum combustion explosion pressure in the cylinderfirst increases and then it decreases.When the angle of nozzle incli-nation is less than 45°,the quality of the mixture in the cylinder and the combustion performance can be improved by increasing the angle.When the angle of nozzle inclination is greater than 45°,however,the mixture unevenness increases slightly with the angle,leading to a deterioration of the combustion performances.When the angle of nozzle inclination is between 35°and 55°,the overall combustion performance of the engine is rela-tively good.When the angle of nozzle inclination is 45°,the combustion chamber’s geometry and the cylinder’s airflow are well matched with the fuel spray,and the mixture quality is the best.Compared with 25°,the peak heat release rate increases by 20%,and the maximum combustion burst pressure increases by 5.5%.展开更多
Heavy fuel aviation piston engines(HF-APEs)refer to the engine using fuels with high flash point,such as kerosene or light diesel.Here technique specifications of some classical foreign HF-APEs(Hirth3503,Zanzottera 49...Heavy fuel aviation piston engines(HF-APEs)refer to the engine using fuels with high flash point,such as kerosene or light diesel.Here technique specifications of some classical foreign HF-APEs(Hirth3503,Zanzottera 498)are introduced.Recent progress and trend of fuel injection,fuel ignition,working cycle,intake charging,thermal management and electronic control of HF-APE are compared and summarized.Emphases are put on the technological difficulties,solutions and development tendency in the design,retrofitting and manufacturing of HF-APE aiming to provide references for the research of related area and the development of prototype HF-APE in China.展开更多
In recent years, the subcontracting production for foreign trade of the Xi’an Aviation Engine Company (XAEC), a foreign trade production base of China, has achieved rapid development. In 1994, the company’s export e...In recent years, the subcontracting production for foreign trade of the Xi’an Aviation Engine Company (XAEC), a foreign trade production base of China, has achieved rapid development. In 1994, the company’s export earnings from foreign trade made a breakthrough at US$11 million, and it was commended by the State Economic展开更多
The need for very-high-cycle fatigue(VHCF)testing up to 1010cycles of aviation gas turbine engine blade materials under combined mechanical loads and complex environments has encouraged the development of VHCF testing...The need for very-high-cycle fatigue(VHCF)testing up to 1010cycles of aviation gas turbine engine blade materials under combined mechanical loads and complex environments has encouraged the development of VHCF testing instrumentation and technology.This article begins with a comprehensive review of the existing available techniques that enable VHCF testing.Recent advances in ultrasonic fatigue testing(UFT)techniques are highlighted,containing their new capabilities and methods for single load,multiaxial load,variable amplitude fatigue,and combined cycle fatigue.New techniques for conducting UFT in high-temperature,humid environments,and corrosive environments are summarized.These developments in mechanical loading and environmental building techniques provide the possibility of laboratory construction for real service conditions of blade materials.New techniques that can be used for in situ monitoring of VHCF damage are summarized.Key issues in the UFT field are presented,and countermeasures are collated.Finally,the existing problems and future trends in the field are briefly described.展开更多
Surface crack of components of the cast nickel base superalloy was repaired with twin laser beams under proper technological conditions. One laser beam was used to melt the substrate material of crack, and the other t...Surface crack of components of the cast nickel base superalloy was repaired with twin laser beams under proper technological conditions. One laser beam was used to melt the substrate material of crack, and the other to fill in powder material to the crack region. The experimental results show that the surface crack with the width of 0.1 ~ 0.3?mm could be repaired under the laser power of 3?kW and the scanning speed of 6 ~ 8?mm/s. The repaired deepness of crack region is below 6.5?mm. The microstructure of repaired region is the cellular crystal, columnar crystal dendrite crystal from the transition region to the top filled layer. The phases in repaired region mainly consisted of supersaturated α Co with plenty of Ni, some Cr and Al, Cr 23 C 6, Co 2B, Co Ni Mo, Ni 4B 3, TiSi and VSi. The hardness of filled layer in repaired region ranged from HV 0.2 450 to HV 0.2 500, and the hardness decreases gradually from the filled layer to joined zone.展开更多
With cutting-edge technologies and considering airline human-resource-saving,a single pilot in commercial jets could be technically feasible.Investigating changes in captains’natural behaviours are initially required...With cutting-edge technologies and considering airline human-resource-saving,a single pilot in commercial jets could be technically feasible.Investigating changes in captains’natural behaviours are initially required to comprehend the specific safe human performance envelope for safeguarding single-pilot flight,particularly in high-risk situations.This paper investigates how captains’performance transforms for fixing emergencies when operating from Dual-Pilot Operations(DPO)to Single-Pilot Operations(SPO)through a physiological-based approach.Twenty pilots flew an emergency-included flight with/without first officers’assistance.The neural activities and scanning behaviours were recorded using a 32-channel Electroencephalogram(EEG)and glasses-based eye tracker,with the observation and post-experiment questionnaires to evaluate the flight operations and pilots’perception.Flying alone,there was a significantly increased cortical activity in h and b waves over the frontal,parietal,and temporal lobes during the more complicated emergencies,and pilots focused less on the primary flight display while spending significantly more time scanning the other interfaces.The physiological fluctuating patterns associated with risky operations in SPO were highlighted by cross-correlating multimodal data.The experimental-based noteworthy insights may wish to inform commercial SPO measures to lessen the persistent physiological fluctuation,assisting airlines in creating SPO-oriented intelligent flight systems to give captains adequate support for assuring safer air transportation.展开更多
China National Guizhou Aviation Industry (Group) Co.Ltd. originally started as an aviation base for development and production,initiated in 1964 by China’s former Premier Zhou Enlai.Situated in a mountainous area,the...China National Guizhou Aviation Industry (Group) Co.Ltd. originally started as an aviation base for development and production,initiated in 1964 by China’s former Premier Zhou Enlai.Situated in a mountainous area,the base formerly specialized in manufacturing fighter trainer aircraft and air- craft engines as an important constituent of major construction projects at the strategic rear base.This can be considered as the group’s first step on the thorny path of development. At that time,thousands of young people devoted their youth to the construction of the group.Among them was Tan Weidong,who 40 years later became chairman of board, leading 46 subsidiary enterprises and institutions.Staffed with a total of 51,000 employees,the group has over the years become a large state-owned enterprise integrating production of both military and civilian products.On the sidelines of the 2006-07 China Automotive Summit Forum,recently held in Guiyang, Guizhou Province of southwest China,Tan shared with Beijing Review his experience of innovating.展开更多
基金supported by the National Key Research and Development Program of China(2022YFB3809005)by SINOPEC(120060-6,121027,and 122042).
文摘Aviation turbine engine oils require excellent thermal-oxidative stability because of their high-temperature environments.High-temperature bearing deposit testing is a mandatory method for measuring the thermal-oxidative performance of aviation lubricant oils,and the relevant apparatus was improved in the present study.Two different commercial aviation turbine engine oils were tested,one with standard performance(known as the SL oil)and the other with high thermal stability,and their thermal-oxidative stability characteristics were evaluated.After 100 h of high-temperature bearing testing,the SL oil was analyzed by using various analytical techniques to investigate its thermal-oxidative process in the bearing test,with its thermal-oxidative degradation mechanism also being discussed.The results indicate that the developed high-temperature bearing apparatus easily meets the test requirements of method 3410.1 in standard FED-STD-791D.The viscosity and total acid number(TAN)of the SL oil increased with the bearing test time,and various deposits were produced in the bearing test,with the micro-particles of the carbon deposits being sphere-like,rod-like,and sheet-like in appearance.The antioxidant additives in the oil were consumed very rapidly in the first 30 h of the bearing test,with N-phenyl-1-naphthylamine being consumed faster than dioctyldiphenylamine.Overall,the oil thermal-oxidative process involves very complex physical and chemical mechanisms.
文摘Heavy-fuel engines are widely used in UAVs(Unmanned Autonomous Vehicles)because of their reliability and high-power density.In this study,a combustion model for an in-cylinder direct injection engine has been imple-mented using the AVL FIRE software.The effects of the angle of nozzle inclination on fuel evaporation,mixture distribution,and combustion in the engine cylinder have been systematically studied at 5500 r/min and consider-ing full load cruise conditions.According to the results,as the angle of nozzle inclination increases,the maximum combustion explosion pressure in the cylinderfirst increases and then it decreases.When the angle of nozzle incli-nation is less than 45°,the quality of the mixture in the cylinder and the combustion performance can be improved by increasing the angle.When the angle of nozzle inclination is greater than 45°,however,the mixture unevenness increases slightly with the angle,leading to a deterioration of the combustion performances.When the angle of nozzle inclination is between 35°and 55°,the overall combustion performance of the engine is rela-tively good.When the angle of nozzle inclination is 45°,the combustion chamber’s geometry and the cylinder’s airflow are well matched with the fuel spray,and the mixture quality is the best.Compared with 25°,the peak heat release rate increases by 20%,and the maximum combustion burst pressure increases by 5.5%.
文摘Heavy fuel aviation piston engines(HF-APEs)refer to the engine using fuels with high flash point,such as kerosene or light diesel.Here technique specifications of some classical foreign HF-APEs(Hirth3503,Zanzottera 498)are introduced.Recent progress and trend of fuel injection,fuel ignition,working cycle,intake charging,thermal management and electronic control of HF-APE are compared and summarized.Emphases are put on the technological difficulties,solutions and development tendency in the design,retrofitting and manufacturing of HF-APE aiming to provide references for the research of related area and the development of prototype HF-APE in China.
文摘In recent years, the subcontracting production for foreign trade of the Xi’an Aviation Engine Company (XAEC), a foreign trade production base of China, has achieved rapid development. In 1994, the company’s export earnings from foreign trade made a breakthrough at US$11 million, and it was commended by the State Economic
基金funded by the National Science Fund for Distinguished Young Scholars(Grant No.51925504)the National Key R and D Program of China(Grant No.2018YFF01012400)+4 种基金the National Key R&D Program of China(Grant No.2022YFA1604000)the National Major Scientific Research Instrument Development Project(Grant No.52227810)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.52021003)the National Natural Science Foundation of China(Grant No.52075220)the Jilin Provincial Department of Science and Technology Fund Project(Grant No.20210101056JC)。
文摘The need for very-high-cycle fatigue(VHCF)testing up to 1010cycles of aviation gas turbine engine blade materials under combined mechanical loads and complex environments has encouraged the development of VHCF testing instrumentation and technology.This article begins with a comprehensive review of the existing available techniques that enable VHCF testing.Recent advances in ultrasonic fatigue testing(UFT)techniques are highlighted,containing their new capabilities and methods for single load,multiaxial load,variable amplitude fatigue,and combined cycle fatigue.New techniques for conducting UFT in high-temperature,humid environments,and corrosive environments are summarized.These developments in mechanical loading and environmental building techniques provide the possibility of laboratory construction for real service conditions of blade materials.New techniques that can be used for in situ monitoring of VHCF damage are summarized.Key issues in the UFT field are presented,and countermeasures are collated.Finally,the existing problems and future trends in the field are briefly described.
文摘Surface crack of components of the cast nickel base superalloy was repaired with twin laser beams under proper technological conditions. One laser beam was used to melt the substrate material of crack, and the other to fill in powder material to the crack region. The experimental results show that the surface crack with the width of 0.1 ~ 0.3?mm could be repaired under the laser power of 3?kW and the scanning speed of 6 ~ 8?mm/s. The repaired deepness of crack region is below 6.5?mm. The microstructure of repaired region is the cellular crystal, columnar crystal dendrite crystal from the transition region to the top filled layer. The phases in repaired region mainly consisted of supersaturated α Co with plenty of Ni, some Cr and Al, Cr 23 C 6, Co 2B, Co Ni Mo, Ni 4B 3, TiSi and VSi. The hardness of filled layer in repaired region ranged from HV 0.2 450 to HV 0.2 500, and the hardness decreases gradually from the filled layer to joined zone.
基金supported by the Research Committee and the Department of Aeronautical and Aviation Engineering,The Hong Kong Polytechnic University,Hong Kong SAR,China(RH1W,ZVS9,RJX2,RLPA and CE1G)Cho Yin Yiu is a recipient of the Hong Kong PhD Fellowship(Reference number:PF21-62058)This study has been granted human ethics approval from the PolyU Institutional Review Board of The Hong Kong Polytechnic University(IRB Reference Number:HSEARS20210318002).
文摘With cutting-edge technologies and considering airline human-resource-saving,a single pilot in commercial jets could be technically feasible.Investigating changes in captains’natural behaviours are initially required to comprehend the specific safe human performance envelope for safeguarding single-pilot flight,particularly in high-risk situations.This paper investigates how captains’performance transforms for fixing emergencies when operating from Dual-Pilot Operations(DPO)to Single-Pilot Operations(SPO)through a physiological-based approach.Twenty pilots flew an emergency-included flight with/without first officers’assistance.The neural activities and scanning behaviours were recorded using a 32-channel Electroencephalogram(EEG)and glasses-based eye tracker,with the observation and post-experiment questionnaires to evaluate the flight operations and pilots’perception.Flying alone,there was a significantly increased cortical activity in h and b waves over the frontal,parietal,and temporal lobes during the more complicated emergencies,and pilots focused less on the primary flight display while spending significantly more time scanning the other interfaces.The physiological fluctuating patterns associated with risky operations in SPO were highlighted by cross-correlating multimodal data.The experimental-based noteworthy insights may wish to inform commercial SPO measures to lessen the persistent physiological fluctuation,assisting airlines in creating SPO-oriented intelligent flight systems to give captains adequate support for assuring safer air transportation.
文摘China National Guizhou Aviation Industry (Group) Co.Ltd. originally started as an aviation base for development and production,initiated in 1964 by China’s former Premier Zhou Enlai.Situated in a mountainous area,the base formerly specialized in manufacturing fighter trainer aircraft and air- craft engines as an important constituent of major construction projects at the strategic rear base.This can be considered as the group’s first step on the thorny path of development. At that time,thousands of young people devoted their youth to the construction of the group.Among them was Tan Weidong,who 40 years later became chairman of board, leading 46 subsidiary enterprises and institutions.Staffed with a total of 51,000 employees,the group has over the years become a large state-owned enterprise integrating production of both military and civilian products.On the sidelines of the 2006-07 China Automotive Summit Forum,recently held in Guiyang, Guizhou Province of southwest China,Tan shared with Beijing Review his experience of innovating.